• Title/Summary/Keyword: Synthetic images

Search Result 573, Processing Time 0.027 seconds

Game Engine Driven Synthetic Data Generation for Computer Vision-Based Construction Safety Monitoring

  • Lee, Heejae;Jeon, Jongmoo;Yang, Jaehun;Park, Chansik;Lee, Dongmin
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.893-903
    • /
    • 2022
  • Recently, computer vision (CV)-based safety monitoring (i.e., object detection) system has been widely researched in the construction industry. Sufficient and high-quality data collection is required to detect objects accurately. Such data collection is significant for detecting small objects or images from different camera angles. Although several previous studies proposed novel data augmentation and synthetic data generation approaches, it is still not thoroughly addressed (i.e., limited accuracy) in the dynamic construction work environment. In this study, we proposed a game engine-driven synthetic data generation model to enhance the accuracy of the CV-based object detection model, mainly targeting small objects. In the virtual 3D environment, we generated synthetic data to complement training images by altering the virtual camera angles. The main contribution of this paper is to confirm whether synthetic data generated in the game engine can improve the accuracy of the CV-based object detection model.

  • PDF

Digital Matting Using Multi-view Camera System (다시점 카메라 시스템을 이용한 디지털 매팅 방법)

  • Hyun, Myung-Han;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.281-282
    • /
    • 2007
  • In this paper, we propose a method for digital matting using a multi-view camera system. In order to generate multi-view synthetic aperture images, we first move all images obtained from the multi-view camera according to their disparities. After we obtain corresponding trimaps by taking a variance of the synthetic aperture images, we convert the trimaps into multi-view alpha mattes. Experimental results show that the proposed scheme can create the composite images successfully by combining foreground objects with multi-view background images.

  • PDF

A Synthetic Method for Generating Texture Patterns Similar to a Selected Original Texture Image

  • Shinji, Ohyama;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.5-35
    • /
    • 2001
  • The purpose of the study is to develop a synthetic method for generating arbitrary number of not the same but similar texture images. The method includes processes to extract basic shape elements from texture images originating in actual objects, to select them to reappear the image features and to arrange them in a image plane. The authors have already proposed the shape-pass type filter bank assuming that the sensual impression mainly depends on minute shapes existing in the texture images. By use of nine basic shape elements, namely black/white-roof, black/white-line, black/white-snake, black/white-pepper, and cliff, natural texture images originating in actual objects have been characterized by feature vectors in a nine dimensional space. To generate arbitrary number of similar texture images, minute shape pieces ...

  • PDF

SINGLE PANORAMA DEPTH ESTIMATION USING DOMAIN ADAPTATION (도메인 적응을 이용한 단일 파노라마 깊이 추정)

  • Lee, Jonghyeop;Son, Hyeongseok;Lee, Junyong;Yoon, Haeun;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.61-68
    • /
    • 2020
  • In this paper, we propose a deep learning framework for predicting a depth map of a 360° panorama image. Previous works use synthetic 360° panorama datasets to train networks due to the lack of realistic datasets. However, the synthetic nature of the datasets induces features extracted by the networks to differ from those of real 360° panorama images, which inevitably leads previous methods to fail in depth prediction of real 360° panorama images. To address this gap, we use domain adaptation to learn features shared by real and synthetic panorama images. Experimental results show that our approach can greatly improve the accuracy of depth estimation on real panorama images while achieving the state-of-the-art performance on synthetic images.

Classification for Landfast Ice Types in the Greenland of the Arctic by Using Multifrequency SAR Images (다중주파수 SAR 영상을 이용한 북극해 그린란드 정착빙 분류)

  • Hwang, Do-Hyun;Hwang, Byongjun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • To classify the landfast ice in the north of the Greenland, observation data, multifrequency Synthetic Aperture Radar (SAR) images and texture images were used. The total four types of sea ice are first year ice, highly deformed ice, ridge and moderately deformed ice. The texture images that were processed by K-means algorithm showed higher accuracy than the ones that were processed by SAR images; however, overall accuracy of maximum likelihood algorithm using texture images did not show the highest accuracy all the time. It turned out that when using K-means algorithm, the accuracy of the multi SAR images were higher than the single SAR image. When using the maximum likelihood algorithm, the results of single and multi SAR images are differ from each other, therefore, maximum likelihood algorithm method should be used properly.

Two-sample Linear Rank Tests for Efficient Edge Detection in Noisy Images (잡음영상에서 효과적인 에지검출을 위한 이표본 선형 순위 검정법)

  • Lim Dong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.9-15
    • /
    • 2006
  • In this paper we propose Wilcoxon test, Median test and Van der Waerden test such as linear rank tests in two-sample location problem for detecting edges effectively in noisy images. These methods are based on detecting image intensity changes between two pixel neighborhoods using an edge-height model to perform effectively on noisy images. The neighborhood size used here is small and its shape is varied adaptively according to edge orientations. We compare and analysis the performance of these statistical edge detectors on both natural images and synthetic images with and without noise.

  • PDF

Synthetic Image Dataset Generation for Defense using Generative Adversarial Networks (국방용 합성이미지 데이터셋 생성을 위한 대립훈련신경망 기술 적용 연구)

  • Yang, Hunmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.

COSMO-SkyMed 2 Image Color Mapping Using Random Forest Regression

  • Seo, Dae Kyo;Kim, Yong Hyun;Eo, Yang Dam;Park, Wan Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.319-326
    • /
    • 2017
  • SAR (Synthetic aperture radar) images are less affected by the weather compared to optical images and can be obtained at any time of the day. Therefore, SAR images are being actively utilized for military applications and natural disasters. However, because SAR data are in grayscale, it is difficult to perform visual analysis and to decipher details. In this study, we propose a color mapping method using RF (random forest) regression for enhancing the visual decipherability of SAR images. COSMO-SkyMed 2 and WorldView-3 images were obtained for the same area and RF regression was used to establish color configurations for performing color mapping. The results were compared with image fusion, a traditional color mapping method. The UIQI (universal image quality index), the SSIM (structural similarity) index, and CC (correlation coefficients) were used to evaluate the image quality. The color-mapped image based on the RF regression had a significantly higher quality than the images derived from the other methods. From the experimental result, the use of color mapping based on the RF regression for SAR images was confirmed.

An Experimental Study of the Synthetic Sinc Wave in Ultrasonic Imaging (초음파 의료 영상에서 합성 Sinc 음장 집속방법의 실험적 고찰)

  • 이광주;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.243-251
    • /
    • 2002
  • Synthetic zinc wave employs Pulsed plane wave as transmit beam with linear time delay curve. The received echoes in different transmit directions at different transmit times are superposed at imaging Points with Proper time delay compensation using synthetic focusing scheme. This scheme. which uses full aperture in transmit, obtains a high SNR image, and also features high lateral resolution by using two way dynamic focusing at all imaging depths. In this Paper, we consider the Problems in realization of synthetic zinc wave. Also. we have applied the scheme to obtain phantom and in-vivo images using a linear array of 5 MHz. In phantom test. experimental images show high resolution over a more extended imaging depth than conventional fixed Point transmit and receive dynamic focusing schemes In-vivo images show that the resolution could not overcome conventional focusing systems because of motion blurring and(or) aberration of tissue. but the frame rate tan be increased by a factor of more than 5 compared to conventional focusing schemes. with competitive resolution at all imaging depths .

Evaluations on a Pressure-Field Calculation Method using PIV Synthetic Image (가상영상 PIV기반 압력장 계산법 평가)

  • Lee, Chang Je;Cho, Gyong Rae;Kim, Uei Kan;Kim, Dong Hyuk;Doh, Deog Hee
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.46-51
    • /
    • 2016
  • In this study, a Masked Omni-Directional Integration(MODI) method for pressure calculation is proposed using the Particle Image Velocimetry (PIV) data. To obtain the velocity field, the Affine PIV method was adopted. Synthetic images were generated for a solid body rotation. Calculation on the pressure was based on the Navier-Stokes equation. The results obtained by the MODI were compared with those obtained by theoretical pressure and by the Omni-Directional Integration(ODI) method. It was shown that the minimum error by the proposed MODI method was attained when the mask size was 1.