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Abstract: Recently, computer vision (CV)-based safety monitoring (i.e., object detection) system 

has been widely researched in the construction industry. Sufficient and high-quality data collection 

is required to detect objects accurately. Such data collection is significant for detecting small 

objects or images from different camera angles. Although several previous studies proposed novel 

data augmentation and synthetic data generation approaches, it is still not thoroughly addressed 

(i.e., limited accuracy) in the dynamic construction work environment. In this study, we proposed 

a game engine-driven synthetic data generation model to enhance the accuracy of the CV-based 

object detection model, mainly targeting small objects. In the virtual 3D environment, we generated 

synthetic data to complement training images by altering the virtual camera angles. The main 

contribution of this paper is to confirm whether synthetic data generated in the game engine can 

improve the accuracy of the CV-based object detection model. 

 

Keywords: construction vision-based safety monitoring, synthetic data generation, game engine, 

object detection 

1. INTRODUCTION 

The construction industry is one of the most accident-prone industries worldwide. In South Korea, 

24.73% of all industrial accidents in 2020 occurred in the construction industry. Also, 27.5% of the 

deaths caused by industrial accidents occurred in the construction industry. The accident death rate 

in the construction industry in 2020 was 0.25‰, more than twice as high as the death rate of 0.11‰ 

in all industries [1]. Statistics from Korea Occupational Safety and Health Agency (KOSHA) stated 

that deaths from falling accounted for about 50% of all fatal accidents in South Korea [2]. In 

mailto:yjhoon11@cau.ac.kr


894 

 

addition, most falling accidents occurred due to the absence of a safety belt; thus, researchers 

emphasized that a safety hook must be fastened during work [3]. A real-time safety monitoring 

system using CCTV was proposed to reduce fall accidents on construction sites [4]. However, 

accompanied by continuous manual monitoring of workers, such a solution might be prone to 

missing the monitoring targets.  

In the past decade, a computer vision (CV)-based real-time safety and health monitoring approach 

was suggested to solve the labor-intensive monitoring issue in the construction industry [5–17]. 

Especially, convolutional neural network (CNN)-based object detection has been widely used to 

monitor hazardous situations such as worker identification [9], construction equipment recognition 

[8], and worker movement tracking [10,11]. CNN-based safety monitoring showed a great potential 

to detect objects without the labor force. However, it might be difficult to accurately detect the 

targets without sufficient high-quality data to train the CNN model [15,18]. 

Building a dataset for training the CNN model involves collecting data, refining raw image data, 

labeling, data verification, and storing datasets [19]. Among these tasks above, the image data 

collection and data labeling process are particularly important for accurate object detection but 

have many drawbacks in current practice. Image data should be manually collected in different 

conditions with a camera, and the labelers should annotate the bounding box for at least tens of 

thousands of images. These manual image data collection and annotation approaches take too much 

time and effort [17], and the quality of the dataset (e.g., redundancy, representativeness, etc.) and 

quality of annotation (i.e., consistent bounding boxes for the same image) may not be reliable 

enough to secure high accuracy in object detection accuracy. These issues become more prominent 

when the CV is used as a means of a safety monitoring method in the construction workspace. The 

reasons are twofold. First, regardless of its severity, safety accidents at construction sites do not 

occur sufficiently to train CNN models. Even various obstacles and blind spots, changing weather 

conditions, and dynamic work task environments interfere consistent data collection process. 

Second, the collected dataset would be annotated in a labor-intensive way by human labelers with 

limited expertise and experience. The labelers’ subjective judgment could derail the quality of the 

data annotation, which may decrease the accuracy of the object detection. For these two reasons 

above, we need a new data collection and data annotation method, which is specially designed for 

CV-based safety monitoring in construction. 

Over the past decade, the method of synthetic data generation has been widely researched to 

address the manual image data collection and annotation approach issues. Synthetic data is 

generated by computer simulation or algorithms. For example, we can generate various safety 

accident scenarios for data collection, and they can be automatically annotated. Despite this 

potential, previous studies using synthetic data generation in the 3D virtual environment are limited 

to a specific camera angle. Thus, it could be hard to detect objects from different camera angles. It 

spurs overfitting issues to a specific scene and decreases the object detection accuracy, particularly 

for the small objects with irregular shapes (e.g., safety hooks). For this reason, even though there 

are attempts to improve the object detection performance of the CV model [20,21], object detection 

accuracy for small objects is not sufficient. Small object detection is very important in construction 

safety monitoring because most personal protective equipment (e.g., gloves, shoes, hardhat, safety 

hook, etc.) for humans is relatively small in size compared to other object detection targets such as 

machines and equipment. In other words, for human-centered safety monitoring in construction, 

high accuracy of the object detection for small objects should be sufficiently secured. 

The main objectives of this study are to suggest a game engine-based synthetic data generation 

model with various camera directions, including automated data annotation modules, and to test 

whether the model can improve the accuracy of the CV model in small object detection.  
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2. RELATED WORKS 

2.1 Literature review 

Object Detection for Safety Monitoring in Construction 

Currently, research on object detection in the construction industry is actively conducted. For 

example, hard-hat and harness detection [5,6,16], unstable behavior detection[13,22], object 

detection using building information model (BIM) data [15,17], and tracking workers in the 

construction site [10, 11] were studied.  

There are two main directions of research to increase detection accuracy for small objects: 1) from 

an algorithmic perspective, improvement of the object detector to create a more suitable model for 

detecting small objects [21,23], and 2) augmentation of original data [12,20,24]. Their approaches 

showed promising solutions for improving object detection accuracy. However, they are not 

thoroughly addressing the object detection problems in a construction work environment (e.g., 

background change over time, dynamic work conditions, different clothes, nationalities, and work 

styles). However, synthetic data reflecting real-world information could help handle such 

problems. 

 

Synthetic Data Generation Approaches for Better Performing Object Detection in 

Construction 

Synthetic data is virtual data that imitate actual data and is used when we cannot collect real-

world data. Synthetic data can be generated in various virtual environments, altering variables and 

parameters. Previously, research on synthetic data generation for CNN has been conducted in two 

directions: 1) synthetic augmentation methods that generate new or replicas of real-world image 

data [12,25,26], and 2) methods that create virtual data similar to real-world data in a virtual 3D 

simulator environment [10,11,15,17,27]. In synthetic augmentation, image cutting and pasting, 

generative adversarial network (GAN) background, and object extraction were studied to generate 

synthetic data to improve object detection accuracy in various fields [28]. It was noted that 

improvisation of the image data, including the texture, color, lighting, and shape of the object, can 

help better performance in object detection, error search, and movement path prediction problems. 

On the other hand, regarding the 3D simulator, researchers focused on creating factors such as 

lighting, weather conditions, ground surface types, and surroundings as similar as possible to real-

world data [10]. They made the virtual workers’ poses and movements similar to real through 

capture. However, this research has problems such as the absence of consideration of different 

camera angles. 

2.2 Knowledge gap 

Previous studies on synthetic data generation are confined to data generation at a specific point 

of sight for detecting targets. For example, they only consider the variables such as texture, color, 

and lighting at specific camera angles [10,11]. In other words, existing studies lack a solution when 

the sight of view of the object is changing. Detection accuracy could decrease when the camera 

direction changes. Because the altered camera direction changes the many factors such as 

background, brightness, and shape of the objects. In addition, in the case of synthetic data 

generation studies based on the 3D simulator [11], realistic description is possible, but additional 

task such as motion capture is required. Lastly, for object detection on construction sites, research 

was conducted on data augmentation and synthetic data on objects that occupy a relatively large 

area in images, such as workers and construction machines, or objects that are easy to notice, such 
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as helmets and harnesses. However, studies to improve accuracy for small objects such as safety 

hooks are insufficient. 

3. GAME ENGINE-DRIVEN SYNTHETIC DATA GENERATION MODEL 

3.1 Research objective 

This research aims to suggest data generation and labeling processes that obtain a synthetic data 

set without the input of additional personnel other than the data generator. Next, we propose and 

verify a synthetic data generation model that can automatically extract training images by changing 

the camera’s angle to increase the accuracy of the CV model for small objects. 

3.2 Framework overview 

This framework consists of two main modules: 1) creating a game engine-based virtual 3D model, 

which consists of workers, safety hooks, and scaffolding; and 2) synthetic data extraction and CNN 

algorithm-based learning. Figure 1 summarizes the overall framework flow of this research. 

 

Figure 9. Process for game engine-driven synthetic data generation 

4. CASE STUDY 

In order to validate our research objective, we conducted a case study. This case study validated 

whether the synthetic data generation model can increase object detection accuracy. We generated 

the 3D virtual working environment model in the game engine according to the variables (i.e., 

camera angle) and extracted automatically labeled synthetic data while varying the variables in 

the model. The datasets consisted of synthetic data. Also, the real-world data were trained with 

Faster-R-CNN. Finally, we evaluated and compared the performance of the object detecting 

model. 

Case scenario 
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This case study focused on object detection for workers and safety hooks when workers perform 

scaffolding tasks. We generated synthetic data from diverse camera directions in the 3D 

environment to validate whether this could increase the detection performance of safety hooks. To 

generate synthetic data for workers and safety hooks, we created models of scaffolding, workers, 

and safety hooks (Fig. 2) on Unity, a 3D game engine. This model executes pre-organized 

animation scenarios (for example, moving to random spots and motion to work) on the 3D game 

engine. Next, we set up virtual cameras to take images from the three angles: the front, the left side, 

and the right upper side. Through these three cameras, synthetic datasets of each angle were 

generated. We used Unity Perception Camera, a Unity add-in module that could automatically 

create labeling data when executing a scenario by assigning a label name for each object [19]. Each 

dataset contained synthetic data of 10,000 images with a resolution of 1024✕768. After that, we 

took videos from the front side of workers in the real world (Fig. 3). Then, we generated human-

annotated datasets. Each worker performed work, fastening one red safety hook to the scaffolding 

rail. Training images were generated by one frame per 2 seconds from the recorded videos. We 

created a bounding box for two classes, a person and hook, performing image labeling. The 

generated 50 images of human-annotated training data were added to the dataset for each front, 

left, and right upper side. 

In summary, the datasets were as follows: 1) train A: 50 images of the real-world data (Fig 4. a), 

2) train B: 10,000 images of the synthetic data generated from the front of the 3D virtual model 

(Fig 4. b), 3) train C: 10,000 images of the synthetic data generated from the left side of the 3D 

virtual model (Fig 4. c), 4) train D: 10,000 images of the synthetic data generated from the right 

upper side of the 3D virtual model (Fig 4. d), 5) train E: 50 images of real-world data and 10,000 

images of the synthetic data generated from the front of the 3D virtual model (Fig 4. a, b), 6) train 

F: 50 images of real-world data and 10,000 images of the synthetic data generated from the left 

side of the 3D virtual model (Fig 4. a, c), and 7) train G: 50 images of real-world data and 10,000 

images of the synthetic data generated from the right upper side of the 3D virtual model (Fig 4. a, 

d). Then, CNN algorithm-based training was implemented based on the seven datasets listed above. 

CNN algorithm-based training used the Faster-R-CNN model through the Resnet50 (using a pre-

trained model) within the Pytorch framework. 

 

 

Figure 10. Scaffolding, human, and safety hook model Figure 11. Real-world image 
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Figure 12. Example images for training datasets 

Validation method 

As 50 real-world images were taken for training, we extracted other real-world images for the 

test. Three videos were taken from the camera angles on the front, left, and right upper sides for 

two workers and red safety hooks on the scaffolding. Each of the 100 test images was extracted 

from the three recorded videos, one frame per 2 seconds. Three test datasets were generated through 

bounding-box labeling in person. In summary, the test datasets were as follows: 1) test A: 100 real-

world images taken from the front of the scaffolding (Fig 5. a), 2) test B: 100 real-world images 

taken from the left side of the scaffolding (Fig 5. b), and 3) test C: 100 real-world images taken 

from the upper right side of the scaffolding (Fig 5. c). 

The evaluation of the trained model of the test dataset compares the performance of each trained 

model using the average precision (AP) value for each class based on the intersection over union 

(IoU) = 0.5. 

Figure 13. Example images for test datasets 

5. EXPERIMENTS AND RESULTS 

In order to confirm the results of the case study, we trained the Faster-R-CNN model on seven 

cases. The cases consisted of 50 real-world images and 3 types of 10,000 synthetic images. 

Table 1 presents the results of our experiments. This table contains AP values for a safety hook 

and person. We compared those AP values to analyze the results. 
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Each model has a different training dataset. For example, models A to G were trained with each 

train datasets A to G (Table 1). 

 

Table 9. The results of precision of all models 

Model name Train Dataset Test Dataset Average Precision(IoU = 0.5) 

 

Model A 

 

Train A 

Test A Hook AP: 0.3029, Person AP: 0.9994 

Test B Hook AP: 0.4624, Person AP: 0.9943 

Test C Hook AP: 0.1202, Person AP: 0.8676 

 

Model B 

 

Train B 

Test A Hook AP: 0.1651, Person AP: 0.9911 

Test B Hook AP: 0.2457, Person AP: 0.9792 

Test C Hook AP: 0.0309, Person AP: 0.9239 

 

Model C 

 

Train C 

Test A Hook AP: 0.2663, Person AP: 0.9775 

Test B Hook AP: 0.4105, Person AP: 0.9168 

Test C Hook AP: 0.0377, Person AP: 0.5664 

 

Model D 

 

Train D 

Test A Hook AP: 0.1796, Person AP: 0.9088 

Test B Hook AP: 0.1354, Person AP: 0.9569 

Test C Hook AP: 0.1856, Person AP: 0.9696 

 

Model E 

 

Train E 

Test A Hook AP: 0.4791, Person AP: 0.9944 

Test B Hook AP: 0.2929, Person AP: 0.9800 

Test C Hook AP: 0.2813, Person AP: 0.8833 

 

Model F 

 

Train F 

Test A Hook AP: 0.5045, Person AP: 1.0000 

Test B Hook AP: 0.6138, Person AP: 0.9850 

Test C Hook AP: 0.1893, Person AP: 0.8669 

 

Model G 

 

Train G 

Test A Hook AP: 0.5085, Person AP: 0.9999 

Test B Hook AP: 0.4174, Person AP: 0.9897 

Test C Hook AP: 0.3530, Person AP: 0.9574 

 

In the case of workers in model A (Table 1), the accuracy was 99% or more based on IoU = 0.5 at 

the front and left sides. However, in the case of safety hooks in model A, the accuracy was less 

than 50% based on IoU = 0.5 at all camera angles. It shows that only 50 real-world images for 

training were sufficient for detecting workers, but 50 real-world images for training were not 

sufficient for safety hooks that are relatively small and easy to be covered. Also, if the direction of 

the detecting camera changes, then the detecting accuracy of the CV model could decrease. 

When only synthetic data for training was used, the detecting power dropped more than only 50 

real-world images were used, except for test C of model D. It means that using solely synthetic 

data for training is not appropriate to detect small objects such as safety hooks. 

For models E, F, and G, we found that the detecting performance increased compared to model 

A, except for test B of model E and model G: the detecting accuracy of test A of model E increased 

from 0.3029 to 0.4791, the detecting accuracy of test B of model F increased from 0.4624 to 0.6138, 

and the detecting accuracy of test C of model G increased from 0.1202 to 0.3530. However, the 

results of test B of model E and model G decreased compared to model A. In addition, the results 

of test A of model F and model G are better than the results of test A of model E. 

According to the results of this study, adding the synthetic data generated from different camera 

directions could increase object detection performance. Adding the synthetic data from the same 
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camera direction as the test data increased the detecting accuracy of small objects. Especially when 

the camera direction of the real-world data for training was different from the test data, adding the 

synthetic data from the same camera direction as the test data showed the best accuracy for safety 

hooks. However, if the camera direction of the real-world data for training is the same as the test 

data, adding the synthetic data from the different camera directions could increase more detecting 

accuracy for safety hooks. In other words, the synthetic data generated from different camera 

directions from the real-world data could provide various shapes of objects and different 

backgrounds to increase accuracy. 

 

 

Figure 14. Examples of the experiments 

 In Fig 6, each a, b, and c are examples of prediction corresponding to model E, F, and G. In the 

case of prediction for safety hooks, misdetection is occurred by similar color and shape. In 

addition, safety hooks with tiny pixel size could not be detected. 

6. DISCUSSION & LIMITATIONS 

This research confirmed that using synthetic data extracted from different camera directions could 

increase detecting accuracy. We suggested an automatic synthetic data generation system that does 

not require the input of additional personnel and has three different camera directions. 

This study could be seen as an approach to synthetic data generation for construction safety. By 

increasing the detection accuracy of small objects like safety hooks, safety accidents such as falling 

could be prevented. Although the results of the tests cannot be applied in practice, the detecting 

performance could be enhanced by using the methods such as improving the 3D model and 

changing the training model. 

In this research, synthetic data in particular situations could lead to other overfitting issues. It 

seems that the factors such as the domain shift, same background, same environment, and repeating 

motions could overfit the model. Moreover, although test C of model G showed the best AP value 

for safety hooks, the value was not the best in all the tests of model G. It means that the 50 real-
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world images could have influenced the training. Therefore, we should validate the model in 

different conditions, such as the diversity of fastening forms of safety hooks on the 3D model. In 

addition, methods such as background randomizing and the Airsim might be expected to help solve 

the problem of overfitting. The performance of a CNN depends on many factors such as 

optimization, batches, epochs, learning rate, activation function, and loss function [18]. In this 

experiment, we fixed such factors, but we also expected to ease overfitting by tuning these factors. 

In this study, the real-world training images were set to 50. Since the test data shared the same 

background and scaffold model with the training images, training is sufficient if more than 50 real-

world training images are used. In other words, if we use more than 50 real-world images for 

training, then the trained model predicts better than when synthetic data are used for all of the 

classes (a person and hook). Therefore, in this experiment, if the training images from the real 

world were more than 50, we expected that the real-world data’s influence would be more 

significant than the synthetic data. 

We experimented with three angles: the front, left side, and the upper right side. Synthetic data 

can be extracted from the virtual 3D environment regardless of the camera angle. The test image 

was extracted from only three angles due to spatial constraints in this work. Therefore, we need to 

experiment with various angles in addition to the three angles. 

For the evaluation method, we only used AP values to compare each detecting performance of the 

models. However, there are many evaluation methods such as Recall, F1 Score, and mAP-Recall 

graph. Therefore, we need to evaluate the models using AP values and other evaluation methods. 

In this study, Faster-R-CNN was applied as a deep learning model. Deep learning models with 

higher performance exist, such as Mask-R-CNN in the two-stage model and Yolov.5 in the one-

stage model. Since the importance of this study arises from comparing the performance differences 

between training data sets, not from the maximum value of the object detection accuracy, the 

Faster-R-CNN model could sufficiently support this study’s aim. However, applying a high-

performance deep learning model in future studies is desirable. 

We experimented with red safety hooks. However, in the construction sites, red safety hooks are 

not a general type of safety hooks, and there are many different shapes of safety hooks. 

Furthermore, the detecting performance of the CV model is affected by the colors and shapes of 

objects. Therefore, we need to experiment with different colors and shapes of safety hooks. 

7. CONCLUSION 

Research related to synthetic data is a field that has recently attracted attention due to the explosive 

growth of the artificial intelligence field. In the construction industry, synthetic data generation has 

also been studied. This study proposed a method of generating synthetic data with a game engine 

to improve the detection accuracy of small objects at construction sites. As a result of diversifying 

the camera angles of synthetic data, we verified that small objects could be successfully detected, 

and the automation of data generation could be achieved. Although adding synthetic data to a 

particular dataset reduces object detection accuracy, this could be solved by using various methods 

which can ease overfitting problems in the future. This study is significant in suggesting a synthetic 

data generation method that has not been studied before. Furthermore, it is expected to affect 

securing datasets in the construction industry positively. 
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