• Title/Summary/Keyword: Synthetic environment data

Search Result 147, Processing Time 0.029 seconds

A Study on Agent based Simulation System Architecture for the Engagement of Ground Weapon Systems (지상무기체계 교전 모의를 위한 에이전트 기반 시뮬레이션 시스템 아키텍처 설계 연구)

  • Hwam, Won K.;Chung, Yongho;Na, Jaeho;Park, Sang C.
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.81-90
    • /
    • 2012
  • Presented in this paper is a study for construction of a simulation system for the engagement of ground weapon systems. This paper proposes architecture for the simulation system based on agent simulation design methodology. Every entity of the proposed architecture is developed by assembling modularized agent components, and it enhances the reusability and composability of the entity. Consequently, time, costs, and efforts that are required to develop a new simulation system is able to be reduced by the enhancement. In the case of ground engagement simulation, it is very important to reflect environmental effects. Synthetic battlefield of the proposed architecture has environmental data of the battlefield and interacts with entities in the simulation system. The proposed architecture based simulation system can build swiftly various simulation models by the objectives and derive reasonable results from behaviors of entities that include environmental effects. This paper contains the construction of an example system based on the proposed architecture to verify the advantages of the architecture.

Imaging Method in Time Domain for Bistatic Forward-Looking Radar in Short Range Application (근거리 Bistatic 전방 관측 레이다의 시간 영역 영상화 기법)

  • Sun, Sun-Gu;Cho, Byung-Lae;Lee, Jung-Soo;Park, Gyu-Churl;Ha, Jong-Soo;Han, Seung-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1054-1062
    • /
    • 2011
  • This study describes the time domain imaging algorithm which can be well applied to short-range UWB(ultra wideband) bistatic radar. In the imaging method of SAR technology, the frequency domain method is well applied to the areas which satisfy far-field condition. However in the near-field environment, the image quality is not good due to phase error. However back-projection method based on time domain is well applied to short-range imaging radar. Meanwhile because its processing time is very long, real time-processing is very difficult. To resolve this problem FFBP(Fast Factorized Back-Projection) was proposed. Using the raw data gathered on field we implemented back-projection and FFBP method. Then image quality and processing time were analyzed using these methods.

SAR Remote Sensing Technology Development and Application in China

  • Jing, Li
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.448-453
    • /
    • 2002
  • Remote sensing technology is one of the most powerful tools for human to know the nature and their living environment. However, before microwave remote sensing was developed and applied, remote sensing application was limited strongly by weather and time. Microwave remote sensing technology solves the problem. It makes us to have the capability to acquire information at all time of the day and under all weather condition, and make remote sensing technology be used in more wider area. Microwave remote sensing system include mainly Synthetic Aperture Radar (SAR), Microwave Radiometer, Microwave Scatterometer, and Altimeter (ALT). As SAR can acquire image whose spatial resolution is similar with visible and infrared image, it is paying much attention to and playing a more and more important role in earth observation. In recent year, the development of new SAR technology (multi-band and multi-polarization technology, InSAR technology, D-InSAR technology, and so on) makes SAR remote sensing go to an new stage, and its application area become more and more widely. The first Synthetic Aperture Radar (SAR) in the world appeared in 1960. After that, SAR and its application all developed very fast. Some radar satellites launched and run (include Seasat-A in 1978, ERS-1 in 1991, JERS-1 in 1992, Radarsat in 1995, and so on) promote SAR research and application in world greatly. China began to develop its SAR sensor and research SAR application in 1970s. After more than 30 years' research, it get some important development in sensor development data processing method, and application. Some operational systems have been used and play an important role. This paper will introduce the development of SAR technology and its application in China.

  • PDF

Evaluation of Reservoir Monitoring-based Hydrological Drought Index Using Sentinel-1 SAR Waterbody Detection Technique (Sentinel-1 SAR 영상의 수체 탐지 기법을 활용한 저수지 관측 기반 수문학적 가뭄 지수 평가)

  • Kim, Wanyub;Jeong, Jaehwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.153-166
    • /
    • 2022
  • Waterstorage is one of the factorsthat most directly represent the amount of available water resources. Since the effects of drought can be more intuitively expressed, it is also used in variousstudies for drought evaluation. In a recent study, hydrological drought was evaluated through information on observing reservoirs with optical images. The short observation cycle and diversity of optical satellites provide a lot of data. However, there are some limitations because it is vulnerable to the influence of weather or the atmospheric environment. Therefore, thisstudy attempted to conduct a study on estimating the drought index using Synthetic Aperture Radar (SAR) image with relatively little influence from the observation environment. We produced the waterbody of Baekgok and Chopyeong reservoirs using SAR images of Sentinel-1 satellites and calculated the Reservoir Area Drought Index (RADI), a hydrological drought index. In order to validate the applicability of RADI to drought monitoring, it was compared with Reservoir Storage Drought Index (RSDI) based on measured storage. The two indices showed a very high correlation with the correlation coefficient, r=0.87, Area Under curve, AUC=0.97. These results show the possibility of regional-scale hydrological drought monitoring of SAR-based RADI. As the number of available SAR images increases in the future, it is expected that the utilization of drought monitoring will also increase.

Study on Flood Prediction System Based on Radar Rainfall Data (레이더 강우자료에 의한 홍수 예보 시스템 연구)

  • Kim, Won-Il;Oh, Kyoung-Doo;Ahn, Won-Sik;Jun, Byong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1153-1162
    • /
    • 2008
  • The use of radar rainfall for hydrological appraisal has been a challenge due to the limitations in raw data generation followed by the complex analysis needed to come up with precise data interpretation. In this study, RAIDOM (RAdar Image DigitalizatiOn Method) has been developed to convert synthetic radar CAPPI(Constant Altitude Plan Position Indicator) image data from Korea Meteorological Administration into digital format in order to come up with a more practical and useful radar image data. RAIDOM was used to examine a severe local rainstorm that occurred in July 2006 as well as two other separate events that caused heavy floods on both upper and mid parts of the HanRiver basin. A distributed model was developed based on the available radar rainfall data. The Flood Hydrograph simulation has been found consistent with actual values. The results show the potentials of RAIDOM and the distributed model as tools for flood prediction. Furthermore, these findings are expected to extend the usefulness of radar rainfall data in hydrological appraisal.

A Preliminary Study of Enhanced Predictability of Non-Parametric Geostatistical Simulation through History Matching Technique (히스토리매칭 기법을 이용한 비모수 지구통계 모사 예측성능 향상 예비연구)

  • Jeong, Jina;Paudyal, Pradeep;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.56-67
    • /
    • 2012
  • In the present study, an enhanced subsurface prediction algorithm based on a non-parametric geostatistical model and a history matching technique through Gibbs sampler is developed and the iterative prediction improvement procedure is proposed. The developed model is applied to a simple two-dimensional synthetic case where domain is composed of three different hydrogeologic media with $500m{\times}40m$ scale. In the application, it is assumed that there are 4 independent pumping tests performed at different vertical interval and the history curves are acquired through numerical modeling. With two hypothetical borehole information and pumping test data, the proposed prediction model is applied iteratively and continuous improvements of the predictions with reduced uncertainties of the media distribution are observed. From the results and the qualitative/quantitative analysis, it is concluded that the proposed model is good for the subsurface prediction improvements where the history data is available as a supportive information. Once the proposed model be a matured technique, it is believed that the model can be applied to many groundwater, geothermal, gas and oil problems with conventional fluid flow simulators. However, the overall development is still in its preliminary step and further considerations needs to be incorporated to be a viable and practical prediction technique including multi-dimensional verifications, global optimization, etc. which have not been resolved in the present study.

Application of a Semi-Physical Tropical Cyclone Rainfall Model in South Korea to estimate Tropical Cyclone Rainfall Risk

  • Alcantara, Angelika L.;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.152-152
    • /
    • 2022
  • Only employing historical data limits the estimation of the full distribution of probable Tropical Cyclone (TC) risk due to the insufficiency of samples. Addressing this limitation, this study introduces a semi-physical TC rainfall model that produces spatially and temporally resolved TC rainfall data to improve TC risk assessments. The model combines a statistical-based track model based on the Markov renewal process to produce synthetic TC tracks, with a physics-based model that considers the interaction between TC and the atmospheric environment to estimate TC rainfall. The simulated data from the combined model are then fitted to a probability distribution function to compute the spatially heterogeneous risk brought by landfalling TCs. The methodology is employed in South Korea as a case study to be able to implement a country-scale-based vulnerability inspection from damaging TC impacts. Results show that the proposed model can produce TC tracks that do not only follow the spatial distribution of past TCs but also reveal new paths that could be utilized to consider events outside of what has been historically observed. The model is also found to be suitable for properly estimating the total rainfall induced by landfalling TCs across various points of interest within the study area. The simulated TC rainfall data enable us to reliably estimate extreme rainfall from higher return periods that are often overlooked when only the historical data is employed. In addition, the model can properly describe the distribution of rainfall extremes that show a heterogeneous pattern throughout the study area and that vary per return period. Overall, results show that the proposed approach can be a valuable tool in providing sufficient TC rainfall samples that could be an aid in improving TC risk assessment.

  • PDF

Improvement of KOMPSAT-5 Sea Surface Wind with Correction Equation Retrieval and Application of Backscattering Coefficient (KOMPSAT-5 후방산란계수의 보정식 산출 및 적용을 통한 해상풍 산출 결과 개선)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1373-1389
    • /
    • 2019
  • KOMPSAT-5 is the first satellite in Korea equipped with X-band Synthetic Aperture Radar (SAR) instrument and has been operated since August 2013. KOMPSAT-5 is used to monitor the global environment according to its observation purpose and the availability of KOMPSAT-5 is also highlighted as the need of high resolution wind data for investigating the coastal region. However, the previous study for the validation of wind derived from KOMPSAT-5 showed that the accuracy is lower than that of other SAR satellites. Therefore, in this study, we developed the correction equation of normalized radar cross section (NRCS or backscattering coefficient) for improvement of wind from the KOMPSAT-5 and validated the effect of the equation using the in-situ measurement of ocean buoys. Theoretical estimated NRCS and observed NRCS from KOMPSAT-5 showed linear relationship with incidence angle. Before applying the correction equation, the accuracy of the estimated wind speed showed the relatively high root-mean-square errors (RMSE) of 2.89 m s-1 and bias of -0.55 m s-1. Such high errors were significantly reduced to the RMSE of 1.60 m s-1 and bias of -0.38 m s-1 after applying the correction equation. The improvement effect of the correction equation showed dependency relying on the range of incidence angle.

Classifier Selection for Efficient Face Recognition (효과적인 얼굴 인식을 위한 인식기 선택)

  • Nam, MIl-Young;Rhee, Phill-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.453-456
    • /
    • 2005
  • In this paper, we propose method to improve recognition performance using the most effective algorithm selectively after clustering various face data, because recognition performance of each algorithm according to facial attribute is change. The proposed face recognition is divided into two steps. First step is the clustering integrated various data to be optimized in algorithm. Second is that classify input image by a similar cluster, select suitable algorithm and recognize the target. This thesis takes the first step towards the creation of a synthetic classifier fusiontesting environment. The effects of data correlation on three classifier fusion techniques were examined. We proposed fusion method for each recognition algorithm's result. This research explores how the degree of correlation in classification data affects the degree of accuracy in a fusion context.

  • PDF

Data Fusion and Pursuit-Evasion Simulations for Position Evaluation of Tactical Objects (전술객체 위치 모의를 위한 데이터 융합 및 추적 회피 시뮬레이션)

  • Jin, Seung-Ri;Kim, Seok-Kwon;Son, Jae-Won;Park, Dong-Jo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2010
  • The aim of the study on the tactical object representation techniques in synthetic environment is on acquiring fundamental techniques for detection and tracking of tactical objects, and evaluating the strategic situation in the virtual ground. In order to acquire these techniques, there need the tactical objects' position tracking and evaluation, and an inter-sharing technique between tactical models. In this paper, we study the algorithms on the sensor data fusion and coordinate conversion, proportional navigation guidance(PNG), and pursuit-evasion technique for engineering and higher level models. Additionally, we simulate the position evaluation of tractical objects using the pursuit and evasion maneuvers between a submarine and a torpedo.