Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.2.2

Evaluation of Reservoir Monitoring-based Hydrological Drought Index Using Sentinel-1 SAR Waterbody Detection Technique  

Kim, Wanyub (Department of Global Smart City, Sungkyunkwan University)
Jeong, Jaehwan (Center for Built Environment, Sungkyunkwan University)
Choi, Minha (School of Civil, Architecture Engineering and Landscape Architecture, Sungkyunkwan University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.2, 2022 , pp. 153-166 More about this Journal
Abstract
Waterstorage is one of the factorsthat most directly represent the amount of available water resources. Since the effects of drought can be more intuitively expressed, it is also used in variousstudies for drought evaluation. In a recent study, hydrological drought was evaluated through information on observing reservoirs with optical images. The short observation cycle and diversity of optical satellites provide a lot of data. However, there are some limitations because it is vulnerable to the influence of weather or the atmospheric environment. Therefore, thisstudy attempted to conduct a study on estimating the drought index using Synthetic Aperture Radar (SAR) image with relatively little influence from the observation environment. We produced the waterbody of Baekgok and Chopyeong reservoirs using SAR images of Sentinel-1 satellites and calculated the Reservoir Area Drought Index (RADI), a hydrological drought index. In order to validate the applicability of RADI to drought monitoring, it was compared with Reservoir Storage Drought Index (RSDI) based on measured storage. The two indices showed a very high correlation with the correlation coefficient, r=0.87, Area Under curve, AUC=0.97. These results show the possibility of regional-scale hydrological drought monitoring of SAR-based RADI. As the number of available SAR images increases in the future, it is expected that the utilization of drought monitoring will also increase.
Keywords
Sentinel-1; Synthetic aperture radar; Water body detection; Hydrological drought; RADI; RSDI; ROC curve;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Geudtner, D., R. Torres, P. Snoeij, M. Davidson, and B. Rommen, 2014. Sentinel-1 system capabilities and applications, Proc. of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Jul. 13-18, vol. 1, pp. 1457-1460. https://doi.org/10.1109/igarss.2014.6946711   DOI
2 AghaKouchak, A., A. Farahmand, F.S. Melton, J. Teixeira, M.C. Anderson, B.D. Wardlow, and C.R. Hain, 2015. Remote sensing of drought: Progress, challenges and opportunities, Reviews of Geophysics, 53(2): 452-480. https://doi.org/10.1002/2014RG000456   DOI
3 Ahn, J.B. and H.J. Kim, 2010. Characteristics of Monsoon Climate in the Korean Peninsula, Journal of Climate Research, 5(2): 91-99 (in Korean with English abstract).
4 Alley, W.M., 1984. The Palmer drought severity index: limitations and assumptions, Journal of Applied Meteorology and Climatology, 23(7): 1100-1109. https://doi.org/10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2   DOI
5 Begueria, S., S.M. Vicente-Serrano, F. Reig, and B. Latorre, 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring, International Journal of Climatology, 34(10): 3001-3023. https://doi.org/10.1002/joc.3887   DOI
6 Ma, Q., 2021. Improving SAR target recognition performance using multiple preprocessing techniques, Computational Intelligence and Neuroscience, 2021: 1-8. https://doi.org/10.1155/2021/6572362   DOI
7 Bourgeau-Chavez, L.L., E.S. Kasischke, S.M. Brunzell, J.P. Mudd, K.B. Smith, and A.L. Frick, 2001. Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems, International Journal of Remote Sensing, 22(18): 3665-3687. https://doi.org/10.1080/01431160010029174   DOI
8 Dai, A., 2013. Increasing drought under global warming in observations and models, Nature Climate Change, 3(1): 52-58. https://doi.org/10.1038/nclimate1633   DOI
9 Shin, J.Y., H.H. Kwon, J.H. Lee, and T.W. Kim, 2020. Probabilistic long-term hydrological drought forecast using Bayesian networks and drought propagation, Meteorological Applications, 27(1): e1827. https://doi.org/10.1002/met.1827   DOI
10 Pham-Duc, B., C. Prigent, and F. Aires, 2017. Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations, Water, 9(6): 366. https://doi.org/10.3390/w9060366   DOI
11 Pierdicca, N., L. Pulvirenti, M. Chini, L. Guerriero, and L. Candela, 2013. Observing floods from space: Experience gained from COSMO-SkyMed observations, Acta Astronautica, 84: 122-133. https://doi.org/10.1016/j.actaastro.2012.10.034   DOI
12 Roodposhti, M.S., T. Safarrad, and H. Shahabi, 2017. Drought sensitivity mapping using two one-class support vector machine algorithms, Atmospheric Research, 193: 73-82. https://doi.org/10.1016/j.atmosres.2017.04.017   DOI
13 Lee, D.R., U.T. KIM, and C.S. Yoo, 2004. Climate change impacts on meteorological drought and flood, Journal of Korea Water Resources Association, 37(4): 315-328 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2004.37.4.315   DOI
14 Jeong, M.S., J.S. Kim, H.W. Jang, and J.H. Lee, 2016. ROC evaluation for MLP ANN drought forecasting Model, Journal of Korea Water Resources Association, 49(10): 877-885 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2016.49.10.877   DOI
15 Gao, H., G. Zhao, Y. Li, and S. Zhang, 2021. Drought Monitoring Using Reservoir Data Collected via Satellite Remote Sensing, In: Wu, H., Lettenmaier, D.P., Tang, Q., Ward, P.J. (Ed.), Global Drought and Flood: Observation, Modeling, and Prediction, American Geophysical Union, Washington, D.C., USA, pp. 47-59. https://doi.org/10.1002/9781119427339.ch3   DOI
16 Jang, M.W., J.H. Lee, Y.H. Kim, and S.Y. Hong, 2011. Applicability of Satellite SAR Imagery for Estimating Reservoir Storage, Journal of the Korean Society of Agricultural Engineers, 53(6): 7-16 (in Korean with English abstract). https://doi.org/10.5389/KSAE.2011.53.6.007   DOI
17 Liu, X., X. Zhu, Y. Pan, S. Li, Y. Liu, and Y. Ma, 2016. Agricultural drought monitoring: Progress, challenges, and prospects, Journal of Geographical Sciences, 26(6): 750-767. https://doi.org/10.1007/s11442-016-1297-9   DOI
18 Filipponi, F., 2019. Sentinel-1 GRD preprocessing workflow, Proceedings, 18(1): 11. https://doi.org/10.3390/ECRS-3-06201   DOI
19 Torres, R., P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, B. Rommen, N. Floury, M. Brown, I. N. Traver, P. Deghaye, B. Duesmann, B. Rosich, N. Miranda, C. Bruno, M. L'Abbate, R. Croci, A. Pietropaolo, M. Huchler, and F. Rostan, 2012. GMES Sentinel-1 mission, Remote Sensing of Environment, 120: 9-24. https://doi.org/10.1016/j.rse.2011.05.028   DOI
20 Van Loon, A.F., 2015. Hydrological drought explained, Wiley Interdisciplinary Reviews: Water, 2(4): 359-392. https://doi.org/10.1002/wat2.1085   DOI
21 Gulacsi, A. and F. Kovacs, 2020. Sentinel-1-imagery-based high-resolution water cover detection on wetlands, Aided by Google Earth Engine, Remote Sensing, 12(10): 1614. https://doi.org/10.3390/rs12101614   DOI
22 Jeong, J.H., S.C. Oh, S.C. Lee, J.Y. Kim, and M.H. Choi, 2021. Sentinel-1 SAR image-based waterbody detection technique for estimating the water storage in agricultural reservoirs, Journal of Korea Water Resources Association, 54(7): 535-544 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2021.54.7.535   DOI
23 Keyantash, J.A. and J.A. Dracup, 2004. An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage, Water Resources Research, 40(9): W09304. https://doi.org/10.1029/2003WR002610   DOI
24 Kogan, F.N., 1997. Global drought watch from space, Bulletin of the American Meteorological Society, 78(4): 621-636. https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2   DOI
25 Li, Z.X. and S.W. Kim, 2006. A Multi-thresholding Approach Improved with Otsu's Method, Journal of the Institute of Electronics Engineers of Korea CI, 43(5): 29-37 (in Korean with English abstract).
26 Zhao, G. and H. Gao, 2019. Towards global hydrological drought monitoring using remotely sensed reservoir surface area, Geophysical Research Letters, 46(22): 13027-13035. https://doi.org/10.1029/2019GL085345   DOI
27 West, H., N. Quinn, and M. Horswell, 2019. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities, Remote Sensing of Environment, 232: 111291. https://doi.org/10.1016/j.rse.2019.111291   DOI
28 Yoo, J.Y., H.Y. Song, T.W. Kim, and J.H. Ahn, 2013. Evaluation of short-term drought using daily standardized precipitation index and ROC analysis, KSCE Journal of Civil and Environmental Engineering Research, 33(5): 1851-1860 (in Korean with English abstract). https://doi.org/10.12652/Ksce.2013.33.5.1851   DOI
29 Zhang, R., X. Chen, Q. Cheng, Z. Zhang, and P. Shi, 2016. Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China, Stochastic Environmental Research and Risk Assessment, 30(6): 1641-1657. https://doi.org/10.1007/s00477-016-1249-z   DOI
30 Yoon, D.H., W.H. Nam, H.J. Lee, E.M. Hong, and T.G. Kim, 2020. Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis, Journal of the Korean Society of Agricultural Engineers, 62(3): 51-61 (in Korean with English abstract). https://doi.org/10.5389/KSAE.2020.62.3.051   DOI
31 Otsu, N., 1979. A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66. https://doi.org/10.1109/tsmc.1979.4310076   DOI
32 Bae, D.H., K.H. Son, and H.A. Kim, 2013. Derivation & evaluation of drought threshold level considering hydro-meteorological data on South Korea, Journal of Korea Water Resources Association, 46(3): 287-299 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2013.46.3.287   DOI
33 Ding, Y., M.J. Hayes, and M. Widhalm, 2011. Measuring economic impacts of drought: a review and discussion, Disaster Prevention and Management, 20(4): 434-446. https://doi.org/10.1108/09653561111161752   DOI
34 Liu, W.T. and F.N. Kogan, 1996. Monitoring regional drought using the vegetation condition index, International Journal of Remote Sensing, 17(14): 2761-2782. https://doi.org/10.1080/01431169608949106   DOI
35 Mukherjee, S., A. Mishra, and K.E. Trenberth, 2018. Climate change and drought: a perspective on drought indices, Current Climate Change Reports, 4(2): 145-163. https://doi.org/10.1007/s40641-018-0098-x   DOI
36 Mullissa, A., A. Vollrath, C. Odongo-Braun, B. Slagter, J. Balling, Y. Gou, N. Gorelick, and J. Reiche, 2021. Sentinel-1 sar backscatter analysis ready data preparation in google earth engine, Remote Sensing, 13(10): 1954. https://doi.org/10.3390/rs13101954   DOI
37 Park, C.Y., J.Y. Moon, E.J. Cha, W.T. Yun, and Y.E. Choi, 2008. Recent Changes in Summer Precipitation Characteristics over South Korea, Journal of the Korean Geographical Society, 43(3): 324-336 (in Korean with English abstract).
38 Zargar, A., R. Sadiq, B. Naser, and F. I. Khan, 2011. A review of drought indices, Environmental Reviews, 19(NA): 333-349. https://doi.org/10.1139/a11-013   DOI
39 Mishra, A.K. and V.P. Singh, 2010. A review of drought concepts, Journal of Hydrology, 391(1-2): 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012   DOI