• Title/Summary/Keyword: Synthetic chart

Search Result 12, Processing Time 0.02 seconds

Economic Design of Synthetic Control Charts (합성 관리도의 경제적 설계)

  • 임태진;김용덕
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.2
    • /
    • pp.117-130
    • /
    • 2003
  • This paper investigates the economic design of synthetic control charts. The synthetic control chart has been proven to be statistically superior to the $\bar{X}$-control chart, but its economic characteristics have not been known. We develop an economic model of the synthetic control chart, based on Duncan's model. The synthetic chart has one more decision variable, the lower control limit for the conforming run length. In addition to this, the significance level and the power of the synthetic chart are more complicated than those of the $\bar{X}$-chart. These features make the optimization problem more difficult. We propose an optimization algorithm by adapting the congruent gradient algorithm. We compare the optimal cost of the synthetic chart with that of (equation omitted)-control chart, under the same input parameter set of Duncan’s. For all cases investigated, the synthetic chart shows superior to the $\bar{X}$-chart. The synthetic control chart is easy to implement, and it has better characteristics than the $\bar{X}$-chart in economical sense as well as in statistical sense, so it will be a good alternative to the traditional control charts.

Development of VSI Synthetic Control Chart (가변샘플링기법을 이용한 합성관리도의 개발)

  • Song, Suh-Ill;Park, Hyun-Kyu
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper develops a new VSI $\={X}-CRL$ synthetic control chart that considers convenience of use in the field, and perception of change of process applying VSI techniques to synthetic control chart, simultaneously. We found the optimal sampling interval and various control limit factor of the suggested chart using markov chain. Comparison and analysis is carried out between synthetic VSI $\={X}-CRL$ chart and other chart in the statistical aspect; $\={X}$ control chart, VSI $\={X}$ chart, another synthetic chart. In case that the process follows normal distribution, the proposed VSI $\={X}-CRL$ synthetic control chart in detecting process mean shift showed the best performance in aspect of statistical performance, regardless of control limit L of CRL/S control chart.

A Synthetic Chart to Monitor The Defect Rate for High-Yield Processes

  • Kusukawa, Etsuko;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.158-164
    • /
    • 2005
  • Kusukawa and Ohta presented the $CS_{CQ-r}$ chart to monitor the process defect $rate{\lambda}$ in high-yield processes that is derived from the count of defects. The $CS_{CQ-r}$ chart is more sensitive to $monitor{\lambda}$ than the CQ (Cumulative Quantity) chart proposed by Chan et al.. As a more superior chart in high-yield processes, we propose a Synthetic chart that is the integration of the CQ_-r chart and the $CS_{CQ-r}$chart. The quality characteristic of both charts is the number of units y required to observe r $({\geq}2)$ defects. It is assumed that this quantity is an Erlang random variable from the property that the quality characteristic of the CQ chart follows the exponential distribution. In use of the proposed Synthetic chart, the process is initially judged as either in-control or out-of-control by using the $CS_{CQ-r}$chart. If the process was not judged as in-control by the $CS_{CQ-r}$chart, the process is successively judged by using the $CQ_{-r}$chart to confirm the judgment of the $CS_{CQ-r}$chart. Through comparisons of ARL (Average Run Length), the proposed Synthetic chart is more superior to monitor the process defect rate in high-yield processes to the stand-alone $CS_{CQ-r}$ chart.

A VSSI-CRL Synthetic Control Chart (VSSI-CRL 합성관리도)

  • Lee Jae-Won;Lim Tae-Jin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.1-14
    • /
    • 2005
  • We propose a VSSI-CRL(Variable Sampling Size and Samplina Interval-Conforming Run length) synthetic control chart in order to improve the statistical characteristics of both the VSSI chart and the CRL synthetic chart. The VSSI-CRL chart utilizes VSSI sampling scheme, but it produces a signal only when the CRI is less than a given limit. An algorithm for calculating the ARL(Average Run length) and ATS(Average Time to Signal) of the VSSI-CRL chart is developed by employing Markov chain method. We present some lemmas for describing the statistical characteristics of the VSSI-CRL chart under in-control state. A procedure for designing the VSSI-CRL chart is proposed based on the lemmas. Extensive comparative studios show that the VSSI-CRL chart is superior to the CRL synthetic chart or the VSSI chart in general, and is comparable to the EWMA chart in ATS performance.

A Synthetic Exponentially Weighted Moving-average Chart for High-yield Processes

  • Kusukawa, Etsuko;Kotani, Takayuki;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • As charts to monitor the process fraction defectives, P, in the high-yield processes, Mishima et al. (2002) discussed a synthetic chart, the Synthetic CS chart, which integrates the CS (Confirmation Sample)$_{CCC(\text{Cumulative Count of Conforming})-r}$ chart and the CCC-r chart. The Synthetic CS chart is designed to monitor quality characteristics in real-time. Recently, Kotani et al. (2005) presented the EWMA (Exponentially Weighted Moving-Average)$_{CCC-r}$ chart, which considers combining the quality characteristics monitored in the past with one monitored in real-time. In this paper, we present an alternative chart that is more superior to the $EWMA_{CCC-r}$ chart. It is an integration of the $EWMA_{CCC-r}$ chart and the CCC-r chart. In using the proposed chart, the quality characteristic is initially judged as either the in-control state or the out-of-control state, using the lower and upper control limits of the $EWMA_{CCC-r}$ chart. If the process is not judged as the in-control state by the $EWMA_{CCC-r}$ chart, the process is successively judged, using the $EWMA_{CCC-r}$ chart. We compare the ANOS (Average Number of Observations to Signal) of the proposed chart with those of the $EWMA_{CCC-r}$ chart and the Synthetic CS chart. From the numerical experiments, with the small size of inspection items, the proposed chart is the most sensitive to detect especially the small shifts in P among other charts.

An Adaptive Synthetic Control Chart for Detecting Shifts in the Process Mean (공정평균 이동을 탐지하기 위한 적응 합성 관리도)

  • Lim Taejin
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.169-183
    • /
    • 2004
  • The synthetic control chart (SCC) proposed by Wu and Spedding (2000) is to detect shifts in the process mean. The performance was re-evaluated by Davis and Woodall (2002), and the steady-state average run length (ARL) performance was shown to be inferior to cumulative sum (CUSUM) or exponentially weighted moving average (EWMA) chart This paper proposes a simple adaptive scheme to improve the performance of the synthetic control chart. That is, once a non-conforming (NC) sample occurs, we investigate the next L-consecutive samples with larger sample sizes and shorter sampling intervals. We employ a Markov chain model to derive the ARL and the average time to s19na1 (ATS). We also propose a statistical design procedure for determining decision variables. Comprehensive comparative study shows that the proposed control chart is uniformly superior to the original SCC or double sampling (DS) Χ chart and comparable to the EWMA chart in ATS performance.

A Study on the Adjustment Synthetic Control Chart Pattern for Detecting Shifts using Individual Observations in Start-Up Process (초기공정에서 공정변화에 대한 개별 관측치를 이용한 수정된 합성 관리도 연구)

  • 지선수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.53-58
    • /
    • 2002
  • This paper presents a adjustment synthetic control chart that is an integration of the Shewhart X chart and the conforming run length(CRL) chart. The application of the adjustment synthetic control chart my therefore substantially enhance the effectiveness process control for manufacturing. In the synthetic control chart, denotes the average number of the X sample required to detect a process shift. The synthetic control chart outperforms the EWM chart and the X chart when σ is greater than 0.75σ. And the X-CRL charts suggested above evaluate using the conditional probability.

  • PDF

Economic design of VSI ${\overline{X}}$-CRL Synthetic Control Chart (VSI ${\overline{X}}$-CRL 합성관리도의 경제적 설계)

  • Song, Suh-Ill;Park, Hyun-Kyu;Jung, Hey-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.85-93
    • /
    • 2005
  • This paper is designed a VSI ${\overline{X}}$-CRL synthetic control chart in aspect of economy. We found the optimal sampling interval and various control limit factors under various cost parameters using cost function, proposed Lorenzen and Vance. Optimal design parameters include the sample size, control limit width, sampling interval, CRL/S chart control limit; L. Comparison and analysis of cost parameters are applied between synthetic VSI ${\overline{X}}$-CRL chart and FSI ${\overline{X}}$-CRL chart. The result of this paper shows that VSI ${\overline{X}}$-CRL chart brings cost-cutting effect of 3.04% control expense less than FSI control chart. It may not be difficult to establish the optimal economic control parameters to apply the practical cost parameters in the field.

A Study on Life-Cycle Environmental Impact of Synthetic Resin Formwork (합성수지 거푸집의 전과정 환경영향평가에 관한 연구)

  • Nam, Kyung-Yong;Yang, Keun-Hyeok;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • Synthetic resin formwork is made of lightweight high-density polyethylene(HDPE). This study used a process flow chart that satisfies the system boundary (such as Cradle-to- Product shipmen ) required by ISO FDIS 13352 to evaluate the entire process of synthetic resin foam using. The entire life cycle inventory (LCI) database calculated from input energy sources, materials used, transportation methods, and manufacturing processes at the system boundary was analyzed. Based on the environmental impact assessment index methodology of the Ministry of Environment from the LCI data analysis of synthetic resin formwork, the environmental impact assessment was carried out through classification, normalization, characterization, and weighting process. The experimental results are as follows the amount of CO2 (carbon) emission considering the number of conversions was about 32% lower than that of the Euroform. This shows that the use of synthetic resin formwork reduces material production by half compared to Euroform and reduces CO2 (carbon) emissions.

Comparison of Pigments and Estimation of Production Period in Old and New Celestial Charts Folding Screens (신구법천문도 채색 안료 비교 및 제작시기 추정)

  • Oh, Joon Suk;Hwang, Min Young;Yamato, Asuka;Arai, Kei;Lee, Sae Rom
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.351-367
    • /
    • 2020
  • The pigments of three old and new celestial charts folding screens(『Celestial Chart(Folding Screen)』 and 『Old and New Celestial Charts, Eight-Panel Folding Screen』 of National Folk Museum of Korea and 『Koudou-Nanboku-Ryousouseizu』 of National Diet Library of Japan) were analyzed to estimate their dating. It was estimated that the 『Celestial Charts(Folding Screen)』 was painted using traditional pigments from the Joseon dynasty such as azurite, indigo lake, malachite, atacamite, vermilion, iron oxide, cochineal, gamboge, orpiment, lead white, talc and soot. The green and blue colors of the 『Old and New Celestial Charts, Eight-Panel Folding Screen』 and 『Koudou-Nanboku-Ryousouseizu』 were painted using artificial inorganic pigments such as emerald green and ultramarine blue. These pigments were imported from Europe post the mid-19th century. In the 『Old and New Celestial Chart, Eight-Panel Folding Screen』, only artificial inorganic pigments were used for green and blue colors. However in the 『Koudou-Nanboku-Ryousouseizu』, emerald green and atacamite in green color, and ultramarine blue and indigo lake in blue color were used together. Based on both the results of pigment analysis and the study of star charts and inscriptions, the 『Celestial Charts(Folding Screen)』 was painted post mid-18th century. The 『Koudou-Nanboku-Ryousouseizu』 and 『Old and New Celestial Charts, Eight-Panel Folding Screen』 were painted after green and blue artificial pigments were imported in the mid-19th century. The 『Koudou-Nanboku-Ryousouseizu』 in which both traditional and western artificial pigments were used, can be dated earlier than the 『Old and New Celestial Chart, Eight-Panel Folding Screen』.