• Title/Summary/Keyword: Synthetic 제트

Search Result 26, Processing Time 0.024 seconds

Characterization of Vortex Advection from a Synthetic Jet Impinging on a Wall (충돌 합성 제트의 와류 이송 특성 분석)

  • Kim, MuSeong;Lee, HoonSang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • Impingement cooling utilizing synthetic jets is emerging as a popular cooling technique because of its high local cooling efficiency. The interaction between the vortex structure of the synthetic jet and the surface is crucial in understanding the mechanism of this technique. In this study, the impinging vortex structure and its advection are investigated by experiments with jet-to-surface spacing $2{\leq}H/D{\leq}7$, and synthetic jet Reynolds number $5120{\leq}Re{\leq}9050$. Using phase-locked particle image velocimetry, ensemble averaged (phase averaged) flow fields are obtained, and vortex identification and quantification techniques are applied. The shape, trajectory, and intensity change of the vortex are assessed. A sharp decline in the vortex intensity and the occurrence of a counter-rotating vortex at the impingement point are observed.

Control of Flow Over a Circular Cylinder Using a Synthetic Jet (원형 실린더에서 합성 제트를 이용한 유동 제어)

  • Moon, Sung-Hyun;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2704-2707
    • /
    • 2008
  • We perform an active control on flow over a circular cylinder using a synthetic jet at Re=3900. The synthetic jet is issued from a cavity located inside the cylinder, generating a train of vortices near the surface. These vortices interact with and weaken the main vortices, resulting in drag reduction at a high frequency.

  • PDF

Experimental Study on Synthetic Jet Actuators for Separation Delay (유동 박리를 지연시키기 위한 합성제트 구동기 연구)

  • Kwon, O-Hyun;Byun, Seon-Woo;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • The size of commercial wind turbines has been increased. Generally, the pitch control is used to increase the efficiency of wind turbine. However, the pitch control has difficulty to control the local unsteady flow control which makes fatigue load and decreases the efficiency. In this research, Synthetic Jet Actuators(SJAs) are manufactured and applied into a wing section to delay flow separation and increase aerodynamic performances. The SJAs as a kind of zero-net mass-flux actuators injects and removes fluid through a small orifice with a given frequency. The SJA modules actuated by piezoelectric disks are manufactured and the aerodynamic performances are measured according to the shape of the orifice and the velocity of the jets through the wind tunnel test. It is confirmed that as the velocity of the jets are increased using rectangular shape orifice, drag force is decreased and lift force in increased.

NUMERICAL STUDY ON SYNTHETIC-JET-BASED FLOW SUPPLYING DEVICE (합성제트 기반의 유량 공급 장치에 대한 수치적 연구)

  • Park, M.;Lee, J.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.77-83
    • /
    • 2015
  • Flow characteristics of synthetic jet based flow supplying devices have been computationally investigated for different device shapes. Jet momentum was produced by the volume change of a cavity by two piezoelectric-driven diaphragms. The devices have additional flow path compared with the original synthetic jet actuator, and these flow path changes the flow characteristics of synthetic jet actuator. Four non-dimensional parameters, which were functions of the shapes of the additional flow path, were considered as the most critical parameters in jet performance. Comparative studies were conducted to compare volume flow rate and jet velocity. Computed results were solved by 2-D incompressible Navier-Stokes solver with k-w SST turbulence model. Detailed computations revealed that the additional flow path diminishes suction strength of the synthetic jet actuator. In addition, the cross section area of the flow path has more influence over the jet performances than the length of the flow path. Based on the computational results, the synthetic jet based flow supplying devices could be improved by applying suitable shape of the flow path.

Research on Flow Analysis Program Development Considering Equilibrium Plasma Flow and Impulse Characterization of Sparkjet Actuator (플라즈마에 의한 평형 유동을 고려한 스파크제트 액츄에이터 유동 해석 프로그램 개발과 추력 특성 연구)

  • Kim, Hyung-Jin;Shin, Jin Young;Chae, Jeongheon;Ahn, Sangjun;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.90-97
    • /
    • 2019
  • Sparkjet actuator, also known as plasma synthetic jet actuator (PSJA), is an active flow control device that has possibility of controling supersonic flow. This actuator utilizes arc plasma to deposit energy onto the gas inside the cavity to raise temperature and pressure. A change in the state of the fluid inside the cavity generates pressure waves and momentum jet, and they are exhausted through out the orifice exit and disturb external flow field. Since the cavity flow is affected by arc plasma, which is an equilibrium plasma and have generated equilibrium flow, the equilibrium state of air should be considered in order to analyze the flow of sparkjet actuator. In this study, numerical program for equilibrium flow was developed for the use of sparkjet actuator analysis. The developed program was validated by comparing the time - accurate jet front positions with the reference result. Then, impulse characteristics of the actuator in the atmospheric quiescent air were explained.

CONTROL OF SQUARE CYLINDER FLOW USING PLASMA SYNTHETIC JETS (플라즈마 합성제트를 이용한 사각 실린더 유동의 제어)

  • Kim, Dong-Joo;Kim, Kyoung-Jin
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2012
  • Flows over a square cylinder with and without plasma actuation are numerically investigated to see whether plasma actuation can effectively modify vortex shedding from the cylinder and reduce the drag and lift fluctuations. In this study, a plasma synthetic jet actuator is mounted on the rear side of cylinder as a means of direct-wake control. The effect of plasma actuation is considered by adding a momentum forcing term in the Navier-Stokes equations. Results show that the reduction of mean drag and lift fluctuations is obtained for both steady and unsteady actuation. However, the steady actuation is better than the unsteady one in terms of mean drag as well as drag fluctuations. With the strong steady actuation considered, the interaction of two separating shear layers from rear corners is effectively weakened due to the interference of synthetic jets. It results in a merging of synthetic-jet and shear-layer vortices and the increase of vortex shedding frequency. On the other hand, the unsteady actuation generates pulsating synthetic jets in the near wake, but it does not change the vortex shedding frequency for the actuation frequencies considered in this study.

FLOW CONTROL ON ELLIPTIC AIRFOILS USING SYNTHETIC JET (합성제트를 이용한 타원형 익형 유동제어)

  • Kim, S.H.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • In the present work, the aerodynamic characteristics of elliptic airfoils which have a 12% thickness ratio are numerically investigated based on Reynolds-averaged Navier-Stokes equations and a transition SST model at a Reynolds number 8.0$\times$105. The numerical simulation of a synthetic jet actuator which is a well-known zero-net-mass active flow control actuator located at x/c = 0.00025, was performed to control massive flow separation around the leading edge of the elliptic airfoils. Four cases of non-dimensional frequencies were simulated at an angle of attack of 12 degree. It is found that the size of the vortex induced by synthetic jets was getting smaller as the jet frequency becomes higher. Comparison of the location of synthetic jets between x/c = 0.00025 (around the leading edge) and x/c = 0.9 (near the separation) shows that the control near the leading edge induces closed recirculation flow regions caused by the interaction of the synthetic jet with the external flow, but the control applied at 0.9c (near the trailing edge) induces a very small and weak vortex which quickly decays due to weak intensity.

A Study on Combustion Characteristics of Synthetic Gas Air Lifted Premixed Flames with High Strain Rate in an Impinging Jet Combustion Field (합성가스의 충돌제트 연소장에서 고신장율 부상 예혼합화염 연소 특성 연구)

  • Kang, Ki-Joong;Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • This paper presents both experimental and numerical investigation of the combustion characteristics of stretched premixed lift-off flames using synthetic gas($H_2$/CO) in an impinging burner. We used "Spin code" for numerical analysis. An ICCD camera was employed to measure flame location and flame thickness. The impinging surface temperature was affected by local strain rate K, equivalence ratio, and composition ratio of fuel. In spite of the difference of boundary conditions in experimental and numerical results, the tendencies of surface temperatures were agreed. From result of this work, we also found that flame location and flame thickness directly related to surface temperature are greatly affected by local strain rate K.

SEPARATION CONTROL USING SYNTHETIC JET ON NACA23012 AT HIGH ANGLE OF ATTACK (고받음각의 NACA23012익형에서 synthetic jet을 이용한 박리 제어 연구)

  • Kim S. H.;Kim C.;Kim K. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.125-129
    • /
    • 2005
  • Flow control has been performed using synthetic jet on NACA23012. In order to improve aerodynamic performance, synthetic jet is located near separation paint on airfoil with leading edge droop and plain flap. The flow control using synthetic jet shows that stall characteristics and control surface performance can be improved through resizing separation vortices. Stall is delayed and stall characteristics are improved when synthetic jet is applied from separation region of leading edge droop. Control surface effectiveness is increased and lift is increased when synthetic jet applied at the flap leading edge region. The results show that aerodynamic characteristics can be improved through leading edge droop with synthetic jet at near separation and plain flap with synthetic jet at the flap leading edge. The combination of synthetic jet and simple high lift device is as good as fowler flap system.

  • PDF

An Experimental Study on Heat Transfer Characteristics of Synthetic Gas($H_2/CO$)Air Premixed Flames in an Impinging Jet Burner - Part 1 : Stretched Lift-off Flames (충돌제트 버너에서 합성가스($H_2/CO$) 공기 예혼합 화염의 열전달 특성에 관한 실험적 연구 - Part 1 : 스트레치된 부상 화염)

  • Kang, Ki-Joong;Jo, Joon-Ik;Lee, Kee-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.453-456
    • /
    • 2011
  • An experimental investigation of the heat transfer characteristics of stretched premixed flames using Synthetic gas has been performed. Hydrogen and carbon mon-oxide which could be extracted from coal gasification process are the main fuel of synthetic-gas. Heat flux at the stagnation point was increased as global strainrate was increased, then the heat flux was decreased when a global strainrate reached a sudden point. Heat flux at the stagnation point is also affected by nozzle to impingement distance. Heat flux was increased as nozzle to impingement place distance was increased. This study is a foundation study of practical use of secondary gases from coals.

  • PDF