• 제목/요약/키워드: Synthesized powder materials

검색결과 786건 처리시간 0.03초

Preparation of LiFe PO4 Using Chitosan and its Cathodic Properties for Rechargeable Li-ion Batteries

  • Hong, Kyong-Soo;Yu, Seong-Mi;Ha, Myoung-Gyu;Ahn, Chang-Won;Hong, Tae-Eun;Jin, Jong-Sung;Kim, Hyun-Gyu;Jeong, Euh-Duck;Kim, Yang-Soo;Kim, Hae-Jin;Doh, Chil-Hoon;Yang, Ho-Soon;Jung, Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1719-1723
    • /
    • 2009
  • The LiFeP$O_4$ powder was synthesized by using the solid state reaction method with Fe($C_2O_4){\cdot}2H_2O,\;(NH_4)_2HPO_4,\;Li_2CO_3$, and chitosan as a carbon precursor material for a cathode of a lithium-ion battery. The chitosan added LiFePO4 powder was calcined at 350 ${^{\circ}C}$ for 5 hours and then 800 ${^{\circ}C}$ for 12 hours for the calcination. Then we calcined again at 800 ${^{\circ}C}$ for 12 hours. We characterized the synthesized compounds via the crystallinity, the valence states of iron ions, and their shapes using TGA, XRD, SEM, TEM, and XPS. We found that the synthesized powders were carbon-coated using TEM images and the iron ion is substituted from 3+ to 2+ through XPS measurements. We observed voltage characteristics and initial charge-discharge characteristics according to the C rate in LiFeP$O_4$ batteries. The obtained initial specific capacity of the chitosan added LiFeP$O_4$ powder is 110 mAh/g, which is much larger than that of LiFeP$O_4$ only powder.

치관보철용 Hydroxyapatite의 기계적 물성에 미치는 pH 및 반응온도의 영향 (Effect of pH and Reaction Temperature on Mechanical Properties of Hydroxyapatite for Dental prosthesis)

  • 정인성;허호영
    • 대한치과기공학회지
    • /
    • 제26권1호
    • /
    • pp.89-96
    • /
    • 2004
  • Hydroxyapatite powder were synthesized by precipitation method, varying pH, and reaction temperature. The powders were heated at 1,200$^{\circ}{\cdots}$ and 1,300$^{\circ}{\cdots}$ for fabrication of dental prosthesis. The results are as follows: Synthesized powder showed the smallest particle in size, under the conditions of pH 11 and reaction temperature 37$^{\circ}{\cdots}$. The hydroxyapatite was partially converted to $\alpha,\;\beta$-TCP at 1,200$^{\circ}{\cdots}$ and 1,300$^{\circ}{\cdots}$. Mechanical strength of sample was affected by such powder preparation conditions as pH and reaction temperature and sintering temperature. The mechanical strength of sample prepared under the same conditions was increased with increasing pH, reaction temperature and sintering temperature.

  • PDF

Characterization of TiO2 Synthesized in Acidic Conditions at Low Temperature by Sol-gel Method

  • Nguyen, Thanh Binh;Hwang, Moon-Jin;Lee, Seon-Sam;Choe, Dong-Eon;Ryu, Kwang-Sun
    • 한국분말재료학회지
    • /
    • 제17권5호
    • /
    • pp.409-414
    • /
    • 2010
  • Titanium dioxide ($TiO_2$), which is one of the most basic materials in our daily life, plays a key role for environment purification. We synthesized $TiO_2$ nanoparticles by the hydrolysis reactions of titanium tetraisopropoxide using $HNO_3$ as a peptizing agent or $CH_3COOH$ as a chelating agent in the sol-gel method. The powder consisted of a rod shape or a spherical shape according to the concentration and kind of acid. The physical properties of $TiO_2$ nanoparticles were investigated with X-ray diffraction, SEM, BET analysis, and UV-Vis spectrophotometer.

Nanocrystalline Materials-an Overview

  • Suryanarayana, C.
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.233-245
    • /
    • 1996
  • Nanocrystalline materials, with a grain size of typically <100 nm, are a new class of materials with properties vastly different from and often superior to those of the conventional coarse-grained materials. These materials can be synthesized by a number of different techniques and the grain size, morphology, and composition can be controlled by controlling the process parameters. In comparison to the coarse-grained materials, nanocrystalline materials show higher strength and hardness, enhanced diffusivity, improved ductility/toughness, reduced, density, reduced elastic modulus, higher electrical resistivity, increased specific heat, higher coefficient of thermal expansion, lower thermal conductivity, and superior soft and hard magnetic properties. Limited quantities of these materials are presently produced and marketed in the US, Canada, and elsewhere. Applications for these materials are being actively explored. The present article discusses the synthesis, structure, thermal stability, properties, and potential application of nanocrystalline materials.

  • PDF

분말 제조 방법에 따른 Ni-Y2O3 소결 합금의 미세 구조 및 기계적 특성 평가 (Evaluation of Microstructures and Mechanical Properties of Ni-Y2O3 Sintered Alloys Based on the Powder Preparation Methods)

  • 정건우;차지호;장민서;오민석;박제신
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.484-492
    • /
    • 2023
  • In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.

초고온 소재용 ZrB2계 복합소재의 제조 (Fabrication of ZrB2-based Composites for Ultra-high Temperature Materials)

  • 김성원;채정민;이성민;오윤석;김형태;남산
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.442-448
    • /
    • 2009
  • $ZrB_2$-based composites are candidate materials for ultra-high temperature materials (UHTMs). $ZrB_2$ has become an indispensable ingredient in UHTMs, due to its high melting temperature, relatively low density, and excellent resistance to thermal shock or oxidation. $ZrB_2$ powders are usually synthesized by solid state reactions such as carbothermal, borothermal, or combined carbothermal reaction. SiC is added to this system in order to enhance the oxidation resistance of $ZrB_2$. In this study, $ZrB_2$?based composites were successfully synthesized and densified through two different processing paths. $ZrB_2$ or $ZrB_2$ 25 vol.%SiC was fully synthesized from oxide starting materials with reducing agents after heat treatment at 1400$^{\circ}C$. Besides, $ZrB_2$?20 vol.%SiC was fully densified with $B_4C$ as a sintering additive after hot pressing at 1900$^{\circ}C$. The synthesis mechanism and the effect of sintering additives on densification of $ZrB_2$ ?SiC composites were also discussed.

WC/Co 초경 스크랩 산화물의 고체탄소에 의한 환원/침탄 (Carbothermal Reduction of Oxide Powder Prepared from Waste WC/Co Hardmetal by Solid Carbon)

  • 이길근;하국현
    • 한국분말재료학회지
    • /
    • 제12권2호
    • /
    • pp.112-116
    • /
    • 2005
  • In the present study, the focus is on the analysis of carbothermal reduction of oxide powder prepared from waste WC/Co hardmetal by solid carbon under a stream of argon for the recycling of the WC/Co hard-metal. The oxide powder was prepared by the combination of the oxidation and crushing processes using the waste $WC-8 wt.\%Co$ hardmetal as the raw material. This oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and gases discharge of the mixture during carbothermal reduction was analysed using XRD and gas analyzer. The oxide powder prepared from waste $WC-8wt.\%Co$ hardmetal has a mixture of $WO_{3} and CoWO_{4}$. This oxide powder reduced at about $850^{\circ}C$, formed tungsten carbides at about $950^{\circ}C$, and then fully transformed to a mixed state of tungsten carbide (WC) and cobalt at about $1100^{\circ}C$ by solid carbon under a stream of argon. The WC/Co composite powder synthesized at $1000^{\circ}C$ for 6 hours from oxide powder of waste $WC-8wt.\%Co$ hardmetal has an average particle size of $0.3 {\mu}m$.

액상-환원법으로 합성된 Cu 분말의 특성에 미치는 분산제의 영향 (Effect of Dispersant on the Characterization of Cu Powders Prepared with Wet-reduction Process)

  • 김용이;김태완;박홍채;윤석영
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.50-55
    • /
    • 2007
  • Ultra-fine Copper powder for a conductive paste in electric-electronic field have been synthesized by chemical reduction of aqueous $CuSO_4$ with hydrazine hydrate $(N_2H_4{\cdot}H_2O)$ as a reductor. The effect of reaction conditions such as dispersant and reaction temperature on the particle size and shape for the prepared Cu powders was investigated by means of XRD, SEM, TEM and TGA. Experiments showed that type of dispersant and reaction temperature were affected on the particle size and morphology of the copper powder. When the carboxymethyl cellulose (CMC) was added as a dispersant the relative mono-dispersed and spherical Cu powder was obtained. Cu powders with particle size of approximately 140nm and narrow particle size distribution were obtained from 0.3M $CuSO_4$ with adding of 0.03M CMC and 40ml $N_2H_4{\cdot}H_2O$ at a reaction temperature of $70^{\circ}C$.

Synthesis of Lanthanides Doped $CaTiO_3$ Powder by the Combustion Process

  • Jung, Choong-Hwan;Park, Ji-Yeon;Lee, Min-Yong;Oh, Seok-Jin;Kim, Hwan-Young;Hong, Gye-Won
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.47-52
    • /
    • 2000
  • Lanthanides such as La, Gd and Ce have recognized as elements of high level radioactive wastes immobilized by forming solid solution with $CaTiO_3$. For easy forming solid solution between $CaTiO_3$and lanthanides, the combustion synthesis process was applied and the powder characteristics and sinterability were investigated. The proper selection of the type and the composition of fuels are important to get the crystalline solid solution of $CaTiO_3$and lanthanides. When glycine or the mixtures of urea and citric acid with stoichiometric composition was used as a fuel, the solid solution of $CaTiO_3$with $La_2O_3$or $Gd_2O_3$or $CeO_2$was produced very well by the combustion process. The combustion synthesized powder seemed to have a good sinterability with the linear shrinkage of more than 25% up to $1500^{\circ}C$, while that of the solid state reacted powder was less than 10% at the same condition.

  • PDF

수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용 (Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials)

  • 임진영;안정석;안중호
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.