DOI QR코드

DOI QR Code

Preparation of LiFe PO4 Using Chitosan and its Cathodic Properties for Rechargeable Li-ion Batteries

  • Hong, Kyong-Soo (High-Technology Components & Materials Research Center, Korea Basic Science Institute) ;
  • Yu, Seong-Mi (High-Technology Components & Materials Research Center, Korea Basic Science Institute) ;
  • Ha, Myoung-Gyu (High-Technology Components & Materials Research Center, Korea Basic Science Institute) ;
  • Ahn, Chang-Won (High-Technology Components & Materials Research Center, Korea Basic Science Institute) ;
  • Hong, Tae-Eun (High-Technology Components & Materials Research Center, Korea Basic Science Institute) ;
  • Jin, Jong-Sung (High-Technology Components & Materials Research Center, Korea Basic Science Institute) ;
  • Kim, Hyun-Gyu (High-Technology Components & Materials Research Center, Korea Basic Science Institute) ;
  • Jeong, Euh-Duck (High-Technology Components & Materials Research Center, Korea Basic Science Institute) ;
  • Kim, Yang-Soo (Suncheon Branch, Korea Basic Science Institute) ;
  • Kim, Hae-Jin (Energy Nano Materials Team, Korea Basic Science Institute) ;
  • Doh, Chil-Hoon (Korea Electrotechnology Research Institute) ;
  • Yang, Ho-Soon (Department of Physics, Pusan National University) ;
  • Jung, Hee (Department of Computer Science, Gyeongsang National University)
  • Published : 2009.08.20

Abstract

The LiFeP$O_4$ powder was synthesized by using the solid state reaction method with Fe($C_2O_4){\cdot}2H_2O,\;(NH_4)_2HPO_4,\;Li_2CO_3$, and chitosan as a carbon precursor material for a cathode of a lithium-ion battery. The chitosan added LiFePO4 powder was calcined at 350 ${^{\circ}C}$ for 5 hours and then 800 ${^{\circ}C}$ for 12 hours for the calcination. Then we calcined again at 800 ${^{\circ}C}$ for 12 hours. We characterized the synthesized compounds via the crystallinity, the valence states of iron ions, and their shapes using TGA, XRD, SEM, TEM, and XPS. We found that the synthesized powders were carbon-coated using TEM images and the iron ion is substituted from 3+ to 2+ through XPS measurements. We observed voltage characteristics and initial charge-discharge characteristics according to the C rate in LiFeP$O_4$ batteries. The obtained initial specific capacity of the chitosan added LiFeP$O_4$ powder is 110 mAh/g, which is much larger than that of LiFeP$O_4$ only powder.

Keywords

References

  1. Lee, T.; Cho, K.; Oh, J.; Shin, D. J. Power Sources 2007, 174, 394 https://doi.org/10.1016/j.jpowsour.2007.06.136
  2. Yoon, W. S.; Chung, K. Y.; Balasubramanian, M.; Hanson, J.; McBreen, J.; Yang, X. Q. J. Power Sources 2006, 163, 234 https://doi.org/10.1016/j.jpowsour.2006.02.013
  3. Zhao, M. S.; Song, X. P. J. Power Sources 2007, 164, 822 https://doi.org/10.1016/j.jpowsour.2006.11.001
  4. Yang, J.; Xu, J. J. J. Electrochem. Soc. 2006, 153, A716 https://doi.org/10.1149/1.2168410
  5. Wang, G. X.; Needham, S.; Yao, J.; Wang, J. Z.; Liu, R. S.; Liu, H. K. J. Power Sources 2006, 159, 282 https://doi.org/10.1016/j.jpowsour.2006.04.046
  6. Goodenough, J. B. J. Power Sources 2007, 174, 996 https://doi.org/10.1016/j.jpowsour.2007.06.217
  7. Padhi, A. K.; Nanjandaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188 https://doi.org/10.1149/1.1837571
  8. Kim, J. K.; Cheruvally, G.; Choi, J. W.; Kim, J. U.; Ahn, J. H.; Cho, G. B.; Kim, K. W.; Ahn, H. J. J. Power Sources 2007, 166, 211 https://doi.org/10.1016/j.jpowsour.2006.12.089
  9. Zaghib, K.; Mauger, A.; Gendron, F.; Julien, C. M. Solid State Ionics 2008, 179, 16 https://doi.org/10.1016/j.ssi.2007.12.071
  10. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609 https://doi.org/10.1149/1.1837649
  11. Tarascon, J. M.; Armond, M. Nature 2001, 414, 359 https://doi.org/10.1038/35104644
  12. Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184 https://doi.org/10.1149/1.1498255
  13. Delacourt, C.; Wurm, C.; Laffont, L.; Leriche, J. B.; Masquelier, C. Solid State Ionics 2006, 177, 333 https://doi.org/10.1016/j.ssi.2005.11.003
  14. Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc. 2001, 148, A224 https://doi.org/10.1149/1.1348257
  15. Andersson, A. S.; Thomas, J. O.; Kalska, B.; Haggstrom, L. Electrochem. Solid-State Lett. 2000, 3, 66 https://doi.org/10.1149/1.1390960
  16. Kim, C. W.; Park, J. S.; Lee, K. S. J. Power Sources 2006, 163, 144 https://doi.org/10.1016/j.jpowsour.2006.02.071
  17. Sanchez, M. A. E.; Brito, G. E. S.; Fantini, M. C. A.; Goya, G. F.; Matos, J. R. Solid State Ionics 2006, 177, 497 https://doi.org/10.1016/j.ssi.2005.11.018
  18. Nakamura, T.; Miwa, Y.; Tabuchi, M.; Yamada, Y. J. Electrochem. Soc. 2006, 153, A1108 https://doi.org/10.1149/1.2192732
  19. Salah, A. A.; Mauger, A.; Zaghib, K.; Goodenough, J. B.; Ravet, N.; Gauthier, M.; Gendron, F.; Julien, C. M. J. Electrochem. Soc. 2006, 153, A1692 https://doi.org/10.1149/1.2213527
  20. Wang, L. N.; Zhang, Z. G.; Zhang, K. L. J. Power Sources 2007, 167, 200 https://doi.org/10.1016/j.jpowsour.2007.02.002
  21. Zane, D.; Carewska, M.; Scaccia, S.; Cardellini, F.; Prosini, P. P. Electrochim. Acta 2004, 49, 4259 https://doi.org/10.1016/j.electacta.2004.04.022
  22. Jeong, E. D.; Kim, H. J.; Ahn, C. W.; Ha, M. G.; Hong, T. E.; Kim, H. G.; Jin, J. S.; Bae, J. S.; Hong, K. S.; Kim, Y. S.; Kim, H. J.; Doh, C. H.; Yang, H. S. J. Nanosci. Nanotech. 2009, 9, 4467 https://doi.org/10.1166/jnn.2009.M78
  23. Ahn, C. W.; Ha, M. G.; Hong, T. E.; Hong, K. S.; Jeong, E. D.; Kim, Y. S.; Doh, C. H.; Park, S.; Yang, H. S. J. Nanoscience and Nanotechnology (submitted)
  24. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J.; King, R. C. Jr., Eds.; Physical Electronics, Inc: USA, 1995
  25. Myung, S. M.; Komaba, S.; Hirosaki, N.; Yashiro, H.; Kumagai, N. Electrochimica Acta 2004, 49, 4213 https://doi.org/10.1016/j.electacta.2004.04.016
  26. Wu, X. M.; Li, X. H.; Xiao, Z. B.; Liu, J.; Yan, W. B.; Ma, M. Y. Mater. Chem. Phys. 2004, 84, 182 https://doi.org/10.1016/j.matchemphys.2003.11.020

Cited by

  1. Nano SIMS characterization of boron- and aluminum-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium secondary ion batteries vol.42, pp.1, 2012, https://doi.org/10.1007/s10800-011-0369-x
  2. Nanocomposite materials based on chitosan and molybdenum disulfide vol.47, pp.15, 2012, https://doi.org/10.1007/s10853-012-6486-z
  3. Environment-Friendly Cathodes Using Biopolymer Chitosan with Enhanced Electrochemical Behavior for Use in Lithium Ion Batteries vol.7, pp.15, 2015, https://doi.org/10.1021/am5084094
  4. Carbon-coated LiFePO4–carbon nanotube electrodes for high-rate Li-ion battery vol.22, pp.7, 2018, https://doi.org/10.1007/s10008-018-3934-y
  5. PAni-coated LiFePO4 Synthesized by a Low Temperature Solvothermal Method vol.22, pp.1, 2009, https://doi.org/10.1590/1980-5373-mr-2018-0566