• Title/Summary/Keyword: Synthesized gases

Search Result 125, Processing Time 0.034 seconds

Synthesis Processing of the Fine (Ni, Zn)-ferrite Powder for $CO_2$ Decomposition of the Flue Gas in the Iron Foundry (제철소의 연소배가스 $CO_2$ 분해용 (Ni, Zn)-ferrite 미세분말 합성공정 연구)

  • 김정식;안정률
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.164-167
    • /
    • 2000
  • Flue gases in the iron foundry consist of 15~20% CO2 as an air pollution gas whose emission should be mitigated in order to protect the environment. In the present study, ultrafine powders of NixZn1-xFe2O4 as a potential catalyst for the CO2 decomposition were prepared by the coprecipitation methods. Oxygen deficient ferrites (MeFe2O4-$\delta$) can decompose CO2 as C and O2 at a low temperature of about 30$0^{\circ}C$. The XRD result of synthesized ferrites showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with initial molar ratios of the mixed solution prior to reaction. The BET surface area of the (Ni, Zn)-ferrites was about 77~89.5$m^2$/g and their particle size was observed about 10~20 nm. The CO2 decomposition efficiency of the oxygen deficient (Nix, Zn1-x)-ferrites was the highest at x=0.3, and the ternary (Ni, Zn)-ferrites was better than that of binary Ni-ferrites.

  • PDF

Thermodynamic Equilibrium Compositions for a $NH_3-AlCl_3-H_2$ Vapor-Phase Reacting System and Synthesis of High-Purity AlN ($NH_3-AlCl_3-H_2$ 기상반응계의 열역학적 평형조성 및 고순도 AIN 합성)

  • 현상훈;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.33-43
    • /
    • 1986
  • The synthesis of high-purity AlN by a vapor-phase reaction was investigated using the $NH_3-AlCl_3-H_2$ reacting system. The theoretical yields of AlN were determined from th thermodynamic equilibrium composi-tions. It was shown that the yields above 90% could by obtained even in the range of relatively low temper-ature of 600-1200K. The reaction temperature and the initial amounts/ratios of the reacting gases showed significant effects on the yields but the total pressure did not. The experimental results showed that a high-purity AlN having a needle shape was the only product as a solid phase and its amount produced increased with the reaction temperature. While the degree of agglmera-tion of the synthesized AlN increased with the reaction temperature the size of each particle consisting of the agglomerates was independent of the temperature but grew from 0.09 to 0.115${\mu}{\textrm}{m}$ with the flow rate of NH3. These experimental results were compared with the theoretical aspects for the synthesis of a high-purity AlN.

  • PDF

Hot-filament 플라즈마화학기상증착법 이용한 패턴된 DLC층 위에 탄소나노튜브의 선택적 배열

  • Choe, Eun-Chang;Park, Yong-Seop;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.293-293
    • /
    • 2010
  • Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, CNT based transistors, and bio-sensors. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC filmswere observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.

  • PDF

Separation of Gas Based on PTMSP-silica-PEI Composites (PTMSP-silica-PEI 복합막에 의한 기체 분리에 관한 연구)

  • Kang Tae-Bum;Hong Se-Lyung
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.123-132
    • /
    • 2006
  • The PTMSP-silica-PEI composite membranes were synthesized from tetraethoxysilane (TEOS) and poly (1-trimethylsilyl-1-propyne) (PTMSP) by sol-gel process. The PTMSP-silica nanocomposite membranes were characterized by $^1H-NMR$, FT-IR, TGA, XPS, SEM, GPC and gas permeation measurements were accomplished with $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4$. The gases permeability increased with increasing TEOS content. Both the permeability and selectivity of $H_2,\;CH_4$ increased to 15 wt% TEOS. While the permeability of $O_2,\;CO_2$ increased without decrease of selectivity.

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils

  • Jang, Chang-Young;Kim, Sung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.4
    • /
    • pp.175-180
    • /
    • 2013
  • Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.

Synthesis of Core/shell Structured Ag/C Nano Particles and Properties on Annealing Conditions (전기선폭발법을 이용한 core/shell 구조 Ag/C 나노 입자의 제조 및 열처리조건에 따른 특성)

  • Jun, S.H.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.295-301
    • /
    • 2010
  • Multi shell graphite coated Ag nano particles with core/shell structure were successfully synthesized by pulsed wire evaporation (PWE) method. Ar and $CH_4$ (10 vol.%) gases were mixed in chamber, which played a role of carrier gas and reaction gas, respectively. Graphite layers on the surface of silver nano particles were coated indiscretely. However, the graphite layers are detached, when the particles are heated up to $250^{\circ}C$ in the air atmosphere. In contrast, the graphite coated layer was stable under Ar and $N_2$ atmosphere, though the core/shell structured particles were heated up to $800^{\circ}C$. The presence of graphite coated layer prevent agglomeration of nanoparticles during heat treatment. The dispersion stability of the carbon coated Ag nanoparticles was higher than those of pure Ag nanoparticles.

Preparation and Permeation Characteristics of PDMS-b-PMMA Copolymer Membrane (PDMS-b-PMMA 공중합체 막의 제조 및 투과특성)

  • Kang, Tae-Beom;Cho, A-Ra;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • In this research, polydimethylsiloxane-polymethylmethacrylate (PDMS-PMMA) block copolymer was synthesized from polydimethylsiloxane (PDMS) and methylmethacrylate (MMA) monomer using atom transfer radical polymerization (ATRP). The synthesis characterization of the PDMS-b-PMMA copolymer membrane was carried out by a FT-IR, $^1H$-NMR, GPC and DSC. The permeabilities of nitrogen and hydrogen gases were observed being $1.2{\sim}l.5$ barrer and $6.2{\sim}10.5$ barrer, respectively. Simultaneously, selectivities of hydrogen against nitrogen were $5.3{\sim}6.9$. The permeability and selectivity of PDMS-b-PMMA copolymer membrane were showed lower than the PDMS membrane, but higher than the PMMA membrane.

Effect of ON/OFF Cycles of Ar Gas on Structural and Optical Properties of ZnO Nanostructure Grown by Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Cho, Min-Young;Kim, So-A-Ram;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.415-415
    • /
    • 2012
  • ZnO nanostructures were synthesized by a vapor phase transport process in a single-zone furnace within a horizontal quartz tube with an inner diameter of 38 mm and a length of 485 mm. The ZnO nanostructures were grown on Au-catalyzed Si(100) substrates by using a mixture of zinc oxide and graphite powders. The growth of ZnO nanostructures was conducted at $800^{\circ}C$ for 30 min. High-purity Ar and $O_2$ gases were pushed through the quartz tube during the process at a flow rate of 100 and 10 sccm, respectively. The sequence of ON/OFF cycles of the Ar gas flow was repeated, while the $O_2$ flow is kept constant during the growth time. The Ar gas flow was ON for 1 min/cycle and that was OFF for 2 min/cycle. The structure and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscope, X-ray diffraction, temperature-dependent photoluminescence. The preferred orientation of the ZnO nanostructures was along c-axis with hexagonal wurtzite structure.

  • PDF

Oxidation of Hot Pressed Cr2AlC Compounds at 900-1200℃ for Up to 50 Hours in Air (열간 압축법으로 제조된 Cr2AlC 화합물의 900-1200℃, 50시간 동안의 대기중 산화)

  • Lee, Dong-Bok
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • $Cr_2AlC$ compounds were synthesized by hot pressing, and oxidized between 900 and $1200^{\circ}C$ in air for up to 50 hours. They oxidized to a thin $Al_2O_3$ layer containing a small amount of $Cr_2O_3$with the liberation of carbon as CO or $CO_2$ gases. The consumption of Al to form the $Al_2O_3$ layer led to the depletion of Al and enrichment of Cr just below the $Al_2O_3$ layer, resulting in the formation of an underlying $Cr_7C_3$ layer. As the oxidation temperature and time increased, the $Cr_7C_3$ oxide layer and the underlying $Cr_7C_3$ layer thickened. The oxidation resistance of $Cr_2AlC$ was generally good due to the formation of the $Al_2O_3$ barrier layer.

Adsorption of $N_2$ and Ar Gases on the Non-porous Perovskite Surfaces (무공성 Perovskite 표면에서의 $N_2$와 Ar 기체의 흡착)

  • Hyun-Woo Cho;Jung-Soo Kim;Kwang-Soon Lee;Woon-Sun Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.204-210
    • /
    • 1991
  • Multilayer adsorption isotherms of nitrogen and argon on the perovskite-type mixed oxides, synthesized by a citrate coprecipitation method, are determined at the liquid nitrogen temperature using a gravimetric adsorption apparatus. The volume of the adsorbed gas are plotted against the statistical thickness of the adsorbed layer, calculated from several universal adsorption isotherms one after another. The t-method area obtained from this plot is compared with the BET area and finally the appropriateness of universal adsorption isotherms is then discussed on the basis of the plot.

  • PDF