Browse > Article
http://dx.doi.org/10.5695/JKISE.2013.46.4.175

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils  

Jang, Chang-Young (Department of Engineering in Energy & Applied Chemistry, Silla University)
Kim, Sung-Hoon (Department of Engineering in Energy & Applied Chemistry, Silla University)
Publication Information
Journal of the Korean institute of surface engineering / v.46, no.4, 2013 , pp. 175-180 More about this Journal
Abstract
Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.
Keywords
Ni Catalyst size; Ni Catalyst shape; Geometry variation; Carbon coils; Thermal chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. R. Davis, R. J. Slawson, G. R. Rigby, Nature, 171 (1953) 756.
2 N. M. Rodriguez, J. Mater. Res., 8 (1993) 3233.   DOI   ScienceOn
3 M. Zang, Y. Nakayama, L. J. Pan, Jpn. J. Appl. Phys., 39 (2000) L1242.   DOI   ScienceOn
4 R. Kanada, L. J. Pan, S. Akita, N. Okazaki, K. Hirahara, Y. Nakayama, Jpn. J. Appl. Phys., 47 (2008) 1949.   DOI
5 W. Wang, K. Yang, J. Gaillard, P. R. Bandaru, A. M. Rao, Adv. Mater., 20 (2008) 179.   DOI   ScienceOn
6 W. In-Hwang, H. Yanagida, S. Motojima, Mater. Lett., 43 (2000) 11.   DOI   ScienceOn
7 S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, H. Iwanaga, Carbon, 34 (1996) 289.   DOI   ScienceOn
8 N. Tang, J. Wen, Y. Zhang, F. Liu, K. Lin, Y. Du, ACS Nano, 4 (2010) 241.   DOI   ScienceOn
9 Q. Zhang, L. Yu, Z. Cui, Mater. Res. Bull., 43 (2008) 735.   DOI   ScienceOn
10 S. Hokushin, L. Pan, Y. Nakayama, Jpn. J. Appl. Phys., 46 (2007) 5383.   DOI
11 N. M. Rodriguez, M. S. Kim, F. Fortin, I. Mochida, R. T. K. Baker, Appl. Catal. A: General, 148 (1997) 265.   DOI   ScienceOn
12 S. Motojima, Y. Itoh, S. Asakura, H. Iwanaga, J. Mater. Sci., 30 (1995) 5049.   DOI   ScienceOn
13 S. Yang, C. Chen, S. Motojima, Diamond Relat. Mater., 13 (2004) 2152.   DOI   ScienceOn
14 S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, Science, 265 (1994) 635.   DOI   ScienceOn
15 Y.-C. Jeon, S. Park, S.-H. Kim, J. Nanomater., 2013, (2013) Article ID 325827.
16 J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, J. Mater. Chem., 21 (2011) 15872.   DOI   ScienceOn
17 G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Chem. Mater., 10 (1998) 260.   DOI   ScienceOn