• Title/Summary/Keyword: Synergistic response

Search Result 120, Processing Time 0.027 seconds

Benorylate Interaction with Ethoxybenzamide and Lorazepam (Benorylate와 Ethoxybenzamide 밍 Lorazepam 과의 상호작용)

  • 허인회;이명환
    • YAKHAK HOEJI
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 1979
  • Benorylate and ethoxybenzamide have been used alone or in combination as an analgesic, antipyretic and antiinflammatory agent. We investigated the significance of the differences of analgesic activities between single and concurrent administration of benorylate and ethoxybenzamide and lorazepam in mice and also antipyretic activity between single and concurrent administration of benorylate and ethoxybenzamide in rats. 1). Concurrent administration of each half dose of benorylate and ethoxybenamide showed much inhibiting effect on the acetic acid-induced writhing syndrome of mice than the above drug alone, and the some increased analgesic response by hot plate method. 2). The synergistic and analgesic effect of combined administration of benorylate and lorazepam was found to be significant. 3). Antipyretic effect of half-dose combined administration of benorylate and ethoxybenzamide on the rat pyrexia induced by yeast(s.c.) and T.T.G. (i.v.) was shown to be similar to the effect of each drug.

  • PDF

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim;Ja-Hyun Koo;Je-Min Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.

Effect of Mixing 2, 4-D with Other Herbicides on Growth of Different Rice (Oryza sativa L.) Cultivars (2, 4-D와 제초제(除草劑) 혼합처리(混合處理)가 수도(水稻)의 생육(生育)에 미치는 영향(影響))

  • Shin, D.H.;Moody, K.;Zapata, F.J.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.10 no.4
    • /
    • pp.277-284
    • /
    • 1990
  • The response of rice (Oryza sativa L.) cultivars to mixtures of 2, 4-D(2, 4-dichlorophenoxyacetic acid) and other herbicides was investigated to determine if there was an interaction between them. When 2, 4-D was applied, shoot growth of Taipei 309 was more affected than that of IR28 at all concentrations used. In contrast, when thiobencarb (S-[(4-chlorophenyl)methyl]diethylcarbamothioate), butachlor [N-(buthoxymethyl) -2-chloro-N-(2, 6-diethylphenyl) acetamide], and glyphosate [N-(phosphonomethyl)glycine] were applied, the shoot growth of Taipei 309 was less affected than that of IR28 at all herbicide concentrations. Combination of 2, 4-D and the lowest thiobencarb concentration was antagonistic for shoot length for both cultivars, but at higher concentrations, it was synergistic. Synergism for shoot fresh weight between 2, 4-D and thiobencarb was observed with IR28 at all concentrations but, for Taipei 309, synergism was observed only at lower 2, 4-D concentrations. Mixing 2. 4-D with butachlor resulted in greater inhibition in shoot length and fresh weight of IR28 than Taipei 309 at all concentrations indicating a synergistic interaction. With combinations of 2, 4-D and glyphosate, an antagonistic interaction for shoot length was observed for both cultivars. A synergistic interaction for shoot fresh weight was observed with IR28 when combinations of the highest concentration of glyphosate and 2, 4-D were applied but there was an antagonistic interaction with Taipei 309.

  • PDF

cAMP-Dependent Signalling is Involved in Adenosine-Stimulated $Cl^-$ Secretion in Rabbit Colon Mucosa

  • Oh, Sae-Ock;Kim, Eui-Yong;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.521-527
    • /
    • 1998
  • An important property of the intestine is the ability to secrete fluid. The intestinal secretion is regulated by a number of substances including vasoactive intestinal peptide (VIP), ATP and different inflammatory mediators. One of the most important secretagogues is adenosine during inflammation. However, the controversy concerning the underlying mechanism of adenosine-stimulated $Cl^-$ secretion in intestinal epithelial cells still continues. To investigate the effect of adenosine on $Cl^-$ secretion and its underlying mechanism in the rabbit colon mucosa, we measured short circuit current ($I_{SC}$) under automatic voltage clamp with DVC-1000 in a modified Ussing chamber. Adenosine, when added to the basolateral side of the muocsa, increased $I_{SC}$ in a dose-dependent manner. The adenosine-stimulated $I_{SC}$ response was abolished when $Cl^-$ in the bath solution was replaced completely with gluconate. In addition, the $I_{SC}$ response was inhibited by a basolateral Na-K-Cl cotransporter blocker, bumetanide, and by apical $Cl^-$ channel blockers, dephenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), glibenclamide. Amiloride, an epithelial $Na^+$ channel blocker, and 4,4-diisothiocyanato-stilbene-2,2-disulphonate (DIDS), a $Ca^{2+}-activated$ $Cl^-$ channel blocker, had no effect. In the mucosa pre-stimulated with forskolin, adenosine did not show any additive effect, whereas carbachol resulted in a synergistic potentiation of the $I_{SC}$ response. The adenosine response was inhibited by 10 ${\mu}M$ H-89, an inhibitor of protein kinase A. These results suggest that the adenosine-stimulated $I_{SC}$ response is mediated by basolateral to apical $Cl^-$ secretion through a cAMP-dependent $Cl^-$ channel. The rank order of potencies of adenosine receptor agonists was $5'-(N-ethylcarboxamino)adenosine(NECA)>N^6-(R-phenylisopropyl)adenosine(R-$ PIA)>2-[p-(2-carbonylethyl)-phenyl-ethylamino]-5'-N-ethylcarboxaminoadenosine(CGS21680). From the above results, it can be concluded that adenosine interacts with the $A_{2b}$ adenosine receptor in the rabbit colon mucosa and a cAMP-dependent signalling mechanism underlies the stimulation of $Cl^-$ secretion.

  • PDF

Statistical Optimization of the Lysis Agents for Gram-negative Bacterial Cells in a Microfluidic Device

  • Kim, Young-Bum;Park, Ji-Ho;Chang, Woo-Jin;Koo, Yoon-Mo;Kim, Eun-Ki;Kim, Jin-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.288-292
    • /
    • 2006
  • Through statistically designed experiments, lysis agents were optimized to effectively disrupt bacterial cells in a microfluidic device. Most surfactants caused the efficient lysis of Gram-positive microbes, but not of Gram-negative bacteria. A Plackett-Burman design was used to select the components that increase the efficiency of the lysis of the Gram-negative bacteria Escherichia coli. Using this experimental design, both lysozyme and benzalkonium chloride were shown to significantly increase the cell lysis efficiency, and ATP was extracted in proportion to the lysis efficiency. Benzalkonium chloride affected the cell membrane physically, while lysozyme destroyed the cell wall, and the amount of ATP extracted increased through the synergistic interaction of these two components. The two-factor response-surface design method was used to determine the optimum concentrations of lysozyme and benzalkonium chloride, which were found to be 202 and 99 ppm, respectively. The lysis effect was further verified by microscopic observations in the microchannels. These results indicate that Gram-negative cells can be lysed efficiently in a microfluidic device, thereby allowing the rapid detection of bacterial cells using a bioluminescence-based assay of the released ATP.

Induced Resistance in Tomato Plants Against Fusarium Wilt Invoked by Nonpathogenic Fusarium, Chitosan and Bion

  • Amini, J.
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.256-262
    • /
    • 2009
  • The potential of. nonpathogenic Fusarium oxysporum strain Avr5, either alone or in combination with chitosan and Bion, for inducing defense reaction in tomato plants inoculated with F. oxysporum f. sp lycopersici, was studied in vitro and glasshouse conditions. Application Bion at concentration of 5, 50, 100 and $500{\mu}g$/ml, and the highest concentration of chitosan reduced in vitro growth of the pathogen. Nonpathogenic F. oxysporum Avr5 reduced the disease severity of Fusarium wilt of tomato in split plants, significantly. Bion and chitosan applied on tomato seedlings at concentration $100{\mu}g$ a.i./plant; 15, 10 and 5 days before inoculation of pathogen. All treatments significantly reduced disease severity of Fusarium wilt of tomato relative to the infected control. The biggest disease reduction and increasing tomato growth belong to combination of nonpathogenic Fusarium and Bion. Growth rate of shoot and root markedly inhibited in tomato plants in response to tomato Fusarium wilt as compared with healthy control. These results suggest that reduction in disease incidence and promotion in growth parameters in tomato plants inoculated with nonpathogenic Fusarium and sprayed with elicitors could be related to the synergistic and cooperative effect between them, which lead to the induction and regulation of disease resistance. Combination of elicitors and non-pathogenic Fusarium synergistically inhibit the growth of pathogen and provide the first experimental support to the hypothesis that such synergy can contribute to enhanced fungal resistance in tomato. This chemical could provide a new approach for suppression of tomato Fusarium wilt, but its practical use needs further investigation.

Effect of Cypermethrin and Piperonyl Butoxide on Toxic Response in Rats (Cypermethrin과 Piperonyl butoxide가 rat의 독성반응에 미치는 영향)

  • Chung, Kyu-Hyuok;Hong, Sa-Uk
    • YAKHAK HOEJI
    • /
    • v.34 no.2
    • /
    • pp.69-79
    • /
    • 1990
  • The aim of this experiment is to observe the toxicity of cypermethrin[S, R- -cyano-3-phenoxybenzyl-(1R, 1s, cis, trans)-2,2-dimethyl-3-(2,2-dichlorovinyl) cyclopropane carboxylate]and to investigate the synergistic effect of piperonyl butoxide on the cypermethrin toxicity. In cypermethrin (CYP) treated group, the biochemical parameters such as ALT, LDH, glucose in serum were remarkably elevated. The content of cytochrome P-450 and activity of NADPH-cytochrome c reductase in renal microsomal fraction were increased but those in hepatic microsomal fraction were not significantly increased. The activity of aniline hydroxylase and ATPase in liver were decreased. In the case of CYP plus piperonyl butoxide (PB) treated group, AST, ALT, LDH and glucose were more increased. Cytochrome P-450 and NADPH-cytochrome c reductase in liver and kidney were supressed and aniline hydroxylase and ATPase in liver were more decreased. Especially, in the case of CYP plus PB 100 mg/kg treated group, hepatic TBA value was increased but activity of glucose-6-phosphatase was remarkably depressed.

  • PDF

Signaling for Synergistic Activation of Natural Killer Cells

  • Kwon, Hyung-Joon;Kim, Hun Sik
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.240-246
    • /
    • 2012
  • Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy- dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.

The Vibration Analysis of Composite-VEM Thin-Walled Rotating Beam Using GHM Methodology (회전하는 복합재-VEM 박판보의 GHM 기법을 이용한 진동해석)

  • 박재용;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

Toxicity on Laboratory Grown Plankton by the Oils Released from the Hebei Spirit Spill with Emphasis on a Dispersant Used in the Aftermath

  • Choi, Keun-Hyung;Lim, Sang-Min;Lee, Sung-Mi;Park, Gyung-Soo
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.389-397
    • /
    • 2010
  • The in vitro toxicities of three crude oils of the Hebei Spirit were examined on laboratory grown plankton, with a focus on the effects of a dispersant. The specific growth rate of phytoplankton and the mortalities of two zooplankton were measured in response to exposure to various concentrations of water accommodated oil, dispersant or both. The effects of the oils varied among the plankton, but were generally low within the range of the oil concentrations used, with little difference in toxicity among the three oils. Such low toxicity appeared to be associated with weathering of the crude oils. Exposure to the dispersant, however, dramatically increased the mortality of zooplankton, with complete inhibition of phytoplankton growth. No synergistic toxic effect was observed with the crude oil and dispersant combination. A better decision making process could be crafted for future application of dispersant in the event of an oil spill in Korean waters to better protect the marine plankton community from the excessive use of dispersant.