• Title/Summary/Keyword: Synechococcus

Search Result 50, Processing Time 0.026 seconds

Universal Existence of One Chlorophyll a' Molecule in Photosystem I of Oxygenic Photosynthetic Organisms

  • Nakamura, Akimasa;Yoshida, Emi;Taki, Takashi;Watanabe, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.367-369
    • /
    • 2002
  • Chlorophyll (ChI) a' is the Cl3$^2$-epimer of ChI a which is the constituent of P700, the primary electron donor of Photosystem (PS) I, of a thrmophilic cyanobacterium, Synechococcus elongatus, whose structure was recently determined by X-ray crystallography. To determine whether PS I of diverse oxygenic photosynthetic organisms universally contain one molecule of ChI a ’, pigment compositions of thylakoid membranes and PS I complexes isolated from cyanobacteria, green algae, red algae and higher plants were determined by reversed-phase HPLC. The results show that involvement of one ChI a'molecule in PS I is the universal feature for Chi a-based PS I of oxygenic photosynthetic organisms.

  • PDF

Phylogentic Position, Pigment Content and Optimal Growth Condition of the Unicellular Hydrogen-Producing Cyanobacterial Strains from Korean Coasts (한국 연안산 단세포성 수소생산 남세균 종주들의 분류계통, 색소함량 및 최적성장 환경)

  • PARK, JONG-WOO;KIM, JU HEE;CHO, AE-RA;JUNG, YUN-DUK;KIM, PYOUNG JOONG;KIM, HYUNG-SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • To set up unicellular cyanobacterial strains with photo-biological $H_2$ production potential, live samples were repeatedly collected from 68 stations in the coastal zone of Korea for the four years since 2005. Among 77 cyanobacterial strains established six (KNU strains, CB-MAL002, 026, 031, 054, 055 and 058) were finally chosen as the excellent strains for $H_2$ production with $H_2$ accumulation over 0.15 mL $H_2\;mL^{-1}$ under general basic $H_2$ production conditions as well as positive $H_2$ production for more than 60 hr. To explore optimum procedures for higher $H_2$ production efficiency of the six cyanobacterial strains, the inter-strain differences in the growth rate under the gradients of water temperature and salinity were investigated. The maximum daily growth rates of the six strains ranged from 1.78 to 2.08, and all of them exhibited $N_2-fixation$ ability. Based on the similarity of the 16S rRNA sequences, all the test strains were quite close to Cyanothece sp. ATCC51142 (99%). The six strains, however, were grouped into separate clades from strain ATCC51142 in the molecular phylogeny diagram. Chlorophyll- a content was 3.4~7.8% of the total dried weight, and the phycoerythrin and phycocyanin contents were half of those in the Atlantic strain, Synechococcus sp. Miami BG03511. The growth of the six strains was significantly suppressed at temperatures above the optimal range, $30{\sim}35^{\circ}C$, to be nearly stopped at $40^{\circ}C$. The growth was not inhibited by high salinities of 30 psu salinity in all the strains while strain CB055 maintained its high growth rate at low salinities down to 15 psu. The euryhaline strains like CB055 might support massive biotechnological cultivation systems using natural basal seawater in temperate latitudes. base seawater. The biological and ecophysiological characteristics of the test strains may contribute to designing the optimal procedures for photo-biological $H_2$ production by unicellular cyanobacteria.

Change of Phytoplankton Community by Ultrasonication in Eutrophic Ponds (부영양 연못에서 초음파 작동에 따른 식물플랑크톤의 군집 변화)

  • Ko, So-Ra;Ahn, Chi-Yong;Joung, Seung-Hyun;Kim, Hee-Sik;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.3
    • /
    • pp.221-229
    • /
    • 2006
  • The effects of ultrasonication on phytoplankton were investigated in two ponds in which physicochemical and biological water quality was similar, one as a treatment and the other as a control. The samples were collected from August 18 to September 30 in 2003. Traditional morphological analysis showed that Bacillariophyceae dominated phytoplankton community in both ponds. The abundance of Cyanophyceae was lower in the phytoplankton community of the sonicated pond than that of control pond. We used DGGE (denaturing gradient gel electrophoresis) to analyze the diversity and change of phytoplankton community in two ponds. The DGGE banding patterns of 16S rRNA gene and sequence analysis demonstrated that Oscillatoria acuminata and CFB (Cytophaga-Flavobacterium-Bacteroides) group bacterium appeared in the treated pond, and the control pond was dominated by Synechococcus sp. and Aphanizomenon flos-aquae. Especially, Pseudanabaena sp. dominated during the ultrasonic cessation in the treated pond. The DGGE profiles of 18S rRNA gene and sequence analysis showed that the treated pond was dominated by Chlamydomonas reinhardtii and the control pond by C. reinhardtii and Pteromonas protracta. In conclusion, the ultrasonication affected the reduced growth of cyanobacteria, particularly Pseudanabaena.

Research Trends for Soil-Related Algal Toxicity (토양 관련 조류독성 연구동향)

  • Nam, Sun-Hwa;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.607-612
    • /
    • 2013
  • Soil ecological risk assessment requires terrestrial toxicity data based on trophic levels including plants, earthworms, nematodes, and springtails. To expand the trophic levels, it is needed to consider primary producer algae, nearly distributed in terrestrial environment, as representative terrestrial test species. In this study, we collected research cases focused on soil-related test species and exposure media from SCI papers, and analyzed exposure media, test species, test chemicals, and other test methods, for reviewing research trends of soil-related algal toxicity. Up to now, in the soil-related algal toxicity, test species were 8 cases (Pseudokirchneriella subcapitata, Chlorella vulgaris, Scenedesmus bijugatus, Chlorococcum infusionum, Scenedesmus subspicatus, Nostoc linckia, Synechococcus elongatus, and Chlorococcum sp.) and endpoints were cell count or photosynthetic pigment content. Also, 5 of exposure media were liquid medium, soil extracts, porewater, agar medium, and soil. Most of papers used algae isolated from natural soils or soil extracts. There were only one case for assessing algal toxicity in soil medium. More researches regarding algal toxicity in soil environments need to be conducted consistently.

Effect of Marine Environment Changes on the Abundance and Community Composition of Cyanobacteria in the South Sea of Korea (남해 해역의 해양환경변화가 시아노박테리아 개체수와 군집 조성에 미치는 영향)

  • Won, JongSeok;Lee, Yeonjung;Lee, Howon;Noh, Jae Hoon
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.279-293
    • /
    • 2021
  • To investigate the effect of seasonal marine environment conditions on the cyanobacteria abundance and diversity in the South Sea, four-seasonal surveys were conducted along the 127.5°E survey transect line in the central South Sea using flow cytometry and 16S-23S ITS on the Miseq platform from August 2016 to May 2017. The average abundance of Synechococcus varied from 3.3 × 103 to 7.4 × 104 cells ml-1. The abundance was the highest in the summer and the lowest in the winter, and the abundance fluctuated according to water temperature. The abundance was high in the outer sea affected by TWC. However, in summer, the Coastal areas affected by the Yangtze River were more populated than the outer sea. Prochlorococcus was rare and could not penetrate into coastal areas due to the fronts, but showed its dominance in the waters influenced by the TWC. Synechococcus clades II, VII, IX, CRD1, and CRD2 were predominant in the outer sea area affected by the TWC. In the coastal area, clades I and IV showed higher dominance whereas clades V, VI, WPC1, and 5.3-MS3 with euryhaline characteristics, showed a high dominance rate in the water masses affected by the low-salinity water of the Yangtze River in the summer. Clade XVI, XVII, CB1, CB5, and 5.3-I/II showed high dominance in nutrient-rich waters in the summer with increased water temperature. The abundance and community composition of cyanobacteria changed in the South Sea due to the influence of the TWC and stratification. In the summer, the abundance and the community composition differed, and were mainly affected by the general influence of the TWC in addition to the influence of the Yangtze River low-salinity water.

Five Alexandrium species lacking mixotrophic ability

  • Lim, An Suk;Jeong, Hae Jin;Ok, Jin Hee
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.289-301
    • /
    • 2019
  • Mixotrophy in marine organisms is an important aspect of ecology and evolution. The discovery of mixotrophic abilities in phototrophic dinoflagellates alters our understanding of the dynamics of red tides. In the phototrophic dinoflagellate genus Alexandrium, some species are mixotrophic, but others are exclusively autotrophic. There are differences in the ecological roles of autotrophic and mixotrophic Alexandrium in marine food webs. However, of the 34 known Alexandrium species, the mixotrophic ability of >20 species has yet to be explored. In this study, the mixotrophic capabilities of Alexandrium insuetum CCMP2082, Alexandrium mediterraneum CCMP3433, Alexandrium pacificum CCMP3434, Alexandrium tamutum ATSH1609, and Alexandrium margalefii CAWD10 were investigated by providing each species with 22 diverse prey items including bacterium-sized microbeads (1 ㎛), the cyanobacterium Synechococcus sp., algal prey species, and the ciliate Mesodinium rubrum. None of the 5 Alexandrium species fed on any of the prey items. These results increase the number of Alexandrium species lacking mixotrophic abilities to 9, compared to the 7 known mixotrophic Alexandrium species. Furthermore, the Alexandrium phylogenetic tree based on the large subunit ribosomal DNA contained 3 large clades, each of which had species with and without mixotrophic abilities. Thus, the acquisition or loss of mixotrophic abilities in Alexandrium might readily occur.

The distribution and ecological factors of aerial algae inhabiting stoneworks in Korea

  • Song, Mi-Ae;Kim, Ok-Jin;Lee, Ok-Min
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.283-294
    • /
    • 2012
  • The physico-chemical and environmental factors of stoneworks were examined from March 2009 to October 2010, and aerial algae living on 24 stoneworks in Korea were identified. Fifty aerial algae were found in 24 stoneworks. Of the 50 taxa, 30 taxa were cyanophytes, 16 taxa were bacillariophytes, 3 taxa were chlorophytes, and 1 taxon was a xanthophyte. Nine species, including Aphanocapsa rivularis, which is known to only live in aquatic conditions, inhabited both aquatic and aerial environments. Synechococcus aeruginosus, Scytonema coactile var. thermalis, S. coactile var. minor, Stigonema ocellatum f. ocellatum, and Oscillatoria boryana were newly recorded in Korea. As a result of a correlation analysis between algae and the physico-chemical and ecological environmental factors, the taxa were divided into the bryophyte group, the humidity group, and the dry group. Although the bryophyte group was included within the humidity group, it was separated from the dry group. Taxa in the bryophyte group including Nostoc commune which was distributed in more humid areas than those in the humidity group. However, dry group taxa including Chroococcus pallidus were distributed in lower humidity than that of the two other groups. Correlations among other environmental factors were tested to identify other factors that could substitute for humidity and light intensity. As a result, tree distance, water distance, and plant coverage were replaceable environmental factors.

The Study of Cyanobacterial Flora from Geothermal Springs of Bakreswar, West Bengal, India

  • Debnath, Manojit;Mandal, Narayan Chandra;Ray, Samit
    • ALGAE
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2009
  • Geothermal springs in India, formed as a result of volcanic or tectonic activities, are characterized by high temperature and relatively abundant reduced compounds. These thermal springs are inhabited by characteristic thermophilic organisms including cyanobacteria. Cyanobacteria are among the few organisms that can occupy high temperature aquatic environments including hot springs. In alkaline and neutral hot springs and streams flowing from them cyanobacteria can form thick colourful mats that exhibit banding patterns. The present investigation involves study of mat forming cyanobacterial flora from hot springs located in Bakreswar, West Bengal, India. The important species found are Synechococcus bigranulatus, S. lividus, Gloeocapsa gelatinosa, G. muralis, Phormidium laminosum, P. frigidum, Oscillatoria princes, O. fragilis, Lyngbya lutea, Pseudanabaena sp., Calothrix thermalis, and Fischerella thermalis. Their distribution pattern in relation to physico-chemical parameters of spring water has also been studied. Three cyanobacterial strains of the above mentioned list were grown in culture and their pigment content and nitrogen fixing capacity were also studied. Nitrogen fixing capacities of Calothrix thermalis, Nostoc sp. (isolated in culture) and Fischerella thermalis are 5.14, 0.29, and 2.60 n mole $C_2H_4/{\mu}g$ of Chl-${\alpha}$/hr respectively. Carotenoid : Chlorophyll-${\alpha}$ ratio of four mat samples collected from Kharkunda, Suryakunda, Dudhkunda and bathing pool are 2.45, 1.60, 1.48, and 1.34, respectively. Higher value of Carotenoid : Chlorophyll-${\alpha}$ ratio coincided with higher temperature.

Biodegradation of Organophosphate Pesticide Using Recombinant Cyanobacteria with Surface- and Intracellular-Expressed Organophosphorus Hydrolase

  • Chungjatupornchai, Wipa;Fa-Aroonsawat, Sirirat
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.946-951
    • /
    • 2008
  • The opd gene, encoding organophosphorus hydrolase (OPH) from Flavobacterium sp. capable of degrading a wide range of organophosphate pesticides, was surface- and intracellular-expressed in Synechococcus PCC7942, a prime example of photoautotrophic cyanobacteria. OPH was displayed on the cyanobacterial cell surface using the truncated ice nucleation protein as an anchoring motif. A minor fraction of OPH was displayed onto the outermost surface of cyanobacterial cells, as verified by immunostaining visualized under confocal laser scanning microscopy and OPH activity analysis; however, a substantial fraction of OPH was buried in the cell wall, as demonstrated by proteinase K and lysozyme treatments. The cyanobacterial outer membrane acts as a substrate (paraoxon) diffusion barrier affecting whole-cell biodegradation efficiency. After freeze-thaw treatment, permeabilized whole cells with intracellular-expressed OPH exhibited 14-fold higher bioconversion efficiency ($V_{max}/K_m$) than that of cells with surface-expressed OPH. As cyanobacteria have simple growth requirements and are inexpensive to maintain, expression of OPH in cyanobacteria may lead to the development of a low-cost and low-maintenance biocatalyst that is useful for detoxification of organophosphate pesticides.

Evaluation of Photosynthetic Squalene Production of Engineered Cyanobacteria Using the Chemical Inducer-Free Expression System (무-유도인자 단백질 발현 시스템을 이용한 재조합 시아노박테리아의 광합성 스쿠알렌 생산 평가)

  • Choi, Sun Young;Woo, Han Min
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.298-304
    • /
    • 2021
  • Photosynthetic conversion through cyanobacteria and microalgae is an increasingly serious concern in the global warming crisis. Many value-added substances are produced through strain improvement, and much research and development is being conducted to determine its potential as an actual industrial strain. Economic barriers throughout processing production can be overcome to produce value-added chemicals by microalgal strains. In this study, we engineered cyanobacteria strains for the photosynthetic production of squalene and confirmed the continuous cultivation of CO2 and light conditions. The free-inducer system of gene expression was developed at the cyanobacterial strains. Then, the squalene production level and growth of the recombinant cyanobacteria were analyzed and discussed. For bio solar-cell factories, the ability to regulate genes based on the free-inducer gene expression system promotes metabolic engineering research and construction to produce value-added chemicals.