Change of Phytoplankton Community by Ultrasonication in Eutrophic Ponds

부영양 연못에서 초음파 작동에 따른 식물플랑크톤의 군집 변화

  • Ko, So-Ra (Environmental Biotechnology laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Chi-Yong (Environmental Biotechnology laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Joung, Seung-Hyun (Environmental Biotechnology laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hee-Sik (Environmental Biotechnology laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • 고소라 (한국생명공학연구원 환경생명공학연구센터) ;
  • 안치용 (한국생명공학연구원 환경생명공학연구센터) ;
  • 정승현 (한국생명공학연구원 환경생명공학연구센터) ;
  • 김희식 (한국생명공학연구원 환경생명공학연구센터) ;
  • 오희목 (한국생명공학연구원 환경생명공학연구센터)
  • Published : 2006.09.01

Abstract

The effects of ultrasonication on phytoplankton were investigated in two ponds in which physicochemical and biological water quality was similar, one as a treatment and the other as a control. The samples were collected from August 18 to September 30 in 2003. Traditional morphological analysis showed that Bacillariophyceae dominated phytoplankton community in both ponds. The abundance of Cyanophyceae was lower in the phytoplankton community of the sonicated pond than that of control pond. We used DGGE (denaturing gradient gel electrophoresis) to analyze the diversity and change of phytoplankton community in two ponds. The DGGE banding patterns of 16S rRNA gene and sequence analysis demonstrated that Oscillatoria acuminata and CFB (Cytophaga-Flavobacterium-Bacteroides) group bacterium appeared in the treated pond, and the control pond was dominated by Synechococcus sp. and Aphanizomenon flos-aquae. Especially, Pseudanabaena sp. dominated during the ultrasonic cessation in the treated pond. The DGGE profiles of 18S rRNA gene and sequence analysis showed that the treated pond was dominated by Chlamydomonas reinhardtii and the control pond by C. reinhardtii and Pteromonas protracta. In conclusion, the ultrasonication affected the reduced growth of cyanobacteria, particularly Pseudanabaena.

초음파가 식물플랑크톤에 미치는 영향을 조사할 목적으로, 이화학적 그리고 생물학적으로 유사한 두 군데의 부영양화 연못에서 2003년 8월 18일부터 9월 30일까지 약 4일 간격으로 시료를 채취하여 실험을 실시하였다. 실험기간 동안 출현한 식물플랑크톤 군집은 규조류(Bacillariophyceae)가 거의 대부분을 차지하였으며, 남세균(Cyanophyceae)은 상대적으로 적은 비중을 차지하였다. 분자생물학적 기법중의 하나인 DGGE(denaturing gradient gel electrophoresis)를 이용하여 식물플랑크톤 군집 구조를 비교분석하였다. 16S rDNA의 DGGE profile 분석에 의하여 처리구 연못에서는 Oscillatoria acuminata를 비롯하여 CFB (Cytophaga-Flavobacterium-Bacteroides) group bacterium 등이 나타나는 것으로 확인되었으며, 초음파가 정지된 시기에 특이적으로 Pseudanabaena sp.가 나타나는 것을 확인하였다. 대조구 연못에서는 Synechococcus sp.와 Aphanizomenon flos-aquae가 출현하는 것을 확인하였다. 18S rDNA의 DGGE profile분석결과 처리구 연못에서는 Chlamydomonas rein. hardtii가 우점하는 것으로 확인되었으며, 초음파 처리에 크게 반응하지 않는 것으로 판단된다. 대조구 연못에서는 처리구 연못에서 나타난 C. reinhardtii를 포함하여 Pteromonas protracta가 출현하였다. 결과적으로 초음파는 진핵성 식물플랑크톤 보다는 원핵성 식물플랑크톤의 다양성에 더 큰 영향을 주는 것으로 판단되며, 일부 남세균(Pseudanabaena sp.)의 생장에 저해를 주는 것으로 판단된다.

Keywords

References

  1. 강 호, 나은경, 신경숙, 장제헌. 2003. 전자선조사를 이용한 부영양화 호수와 연안에서의 조류제어 가능성에 관한 연구. 대한환경공학회지. 25:1368-1374
  2. 고소라, 박성주, 안치용, 최애란, 이정숙, 김희식, 윤병대, 오희 목. 2004. DGGE를 이용한 대청호 수화 발생시기의 세 균군집 분석. 한국미생물학회지. 40:205-210
  3. 김 명, 전은형, 안태영. 2003. 삽교호의 세균다양성과 계통 분류학적 분석. 한국미생물학회지. 39:272-276
  4. 김명운, 김민호, 조장천, 김상종. 1995. Cyanobacteria의 증식 에 따른 대청호 생태계내의 생물군집 변화. 한국육수학회지. 28:1-9
  5. 김범철, 김호섭, 박호동, 최광순, 박종근. 1999. 국내 호수에서 발생한 남세균의 microcystin함량과 독성평가. 한국육수학회지. 32:288-294
  6. 박정아, 허건영, 이정숙, 오윤정, 김보연, 민태익, 김치경, 안종석. 2003. 김치의 저온 발효 중 미생물 변화 양상. 한국미생물학회지. 39:45-50
  7. 유광일, 임병진. 1992. 팔당호에서의 동물플랑크톤 군집구조 와 생물량의 계절적 천이. 한국육수학회지. 25:89-97
  8. 정승현, 안치용, 최애란, 장감용, 오희목. 2005. 대청호에서 강우와 식물플랑크톤 군집의 관계. 환경생물. 23:57-63
  9. 정 준. 1993. 한극담수조류도감. 도서출판 아카데미서적. pp.469
  10. 홍선희, 전선옥, 안태석, 안태영. 2002. 봄철 남세균이 우점한 천호지에서 세균군집구조의 변화. 한극미생물학회지. 38:287-292
  11. Abell GCJ and JP Bowman. 2005. Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. FEMS Microbiol. Ecol. 53:379-391 https://doi.org/10.1016/j.femsec.2005.01.008
  12. Ahn CY, MH Park, SH Joung, HS Kim, KY Jang and HM Oh. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environ. Sci. Technol. 37:3031-3037 https://doi.org/10.1021/es034048z
  13. Amann RI, W Ludwig and KH Schleiffer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169
  14. Cottrell MT and DL Kirchman. 2000. Natural assemblages of matine proteobacteria and members of the Cytophage-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66:1692-1697 https://doi.org/10.1128/AEM.66.4.1692-1697.2000
  15. Covert JS and MA Moran. 2001. Molecular characterization of estuarine bacterial communities that use high- and low-molecular weight fraction of dissolved organic carbon. Aquat. Microb. Ecol. 25: 127-139 https://doi.org/10.3354/ame025127
  16. Crumpton WG, TM Isenhart and PD Mitchell. 1992. Nitrate and organic N analyses with second derivative spectroscopy. Limnol. Oceanogr. 37:907-913 https://doi.org/10.4319/lo.1992.37.4.0907
  17. D'Elia CF, PA Steudler and N Corwin, 1977. Determination of total nitrogen in aqueous sample using persulfate digestion. Limnol. Oceanogr. 22:760-764 https://doi.org/10.4319/lo.1977.22.4.0760
  18. Felip M and J Catalan. 2000. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J. Plankton Res. 22:91-105 https://doi.org/10.1093/plankt/22.1.91
  19. Felske A, ADL Akkermans and WM de Vas. 1998. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription PCR in temperature gradient gel electrophoresis fingerprints. Appl. Environ. Microbiol. 64:4581-4587
  20. Ishii K and M Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755 https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  21. Jaspers E, K Nauhaus, H Cypionka and J Overmann. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36: 153-164 https://doi.org/10.1111/j.1574-6941.2001.tb00835.x
  22. Menzel DW and N Corwin. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10:280-282 https://doi.org/10.4319/lo.1965.10.2.0280
  23. Muyzer G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2:317-322 https://doi.org/10.1016/S1369-5274(99)80055-1
  24. Muyzer G, EC de Waal and AG Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel eletrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700
  25. Muyzer G and K Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127-141 https://doi.org/10.1023/A:1000669317571
  26. Nakayama T, S Watanabe, K Mitsui, H Uchida and I Inouye. 1996. The phylogenetic relationship between the Chlamy-domonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44:47-55 https://doi.org/10.1111/j.1440-1835.1996.tb00037.x
  27. Negro AI, CD Hoyos and JC Vega. 2000. Phytoplankton structure and dynamics in Lake Sanabria and Valparaiso reservoir (NW Spain). Hydrobiologia 424:25-37 https://doi.org/10.1023/A:1003940625437
  28. Oh HM, SJ Lee, JH Kim, HS Kim and BD Yoon. 2001. Seasonal variation and indirect monitoring of microcystin concentrations in Daechung Reservoir, Korea. Appl. Environ. Microbiol. 67:1484-1489 https://doi.org/10.1128/AEM.67.4.1484-1489.2001
  29. Pinhassi J, F Azam, J Hemphala, RA Long, J Martinez, UL Zweifel and A Hagstrom. 1999. Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquat. Microb. Ecol. 17:13-26 https://doi.org/10.3354/ame017013
  30. Wood LW. 1985 Chloroform-methanol extraction of chlorophyll- a. Can. J. Fish Aquat. Sci. 42:38-43 https://doi.org/10.1139/f85-005