• 제목/요약/키워드: Synchrotron X-ray Micro Imaging

검색결과 18건 처리시간 0.03초

Synchrotron X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (Flow Measurement in Xylem Vessels of a Bamboo Leaf Using Synchrotron X-ray Micro Imaging)

  • 김양민;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.83-86
    • /
    • 2003
  • Synchrotron X-ray micro imaging technique was employed to non-invasively monitor the water flow inside xylem vessels in a bamboo leaf. The phase contrast X-ray images clearly visualized plant anatomy and the rise of a water front inside the vessels. Consecutive X-ray images taken for 60 seconds revealed water rise kinetics against gravity in the xylem of a cut dry leaf taken from a bamboo tree. For the first time, traces of water rise, variation of contact angle between water and xylem wall as well as the internal structure of xylem were obtained. In xylem vessels, a repeating flow pattern has a typical flow velocity of $30.7{\mu}m/s$ and faster flow is established intermittently. It is concluded that the transmission type of X-ray micro imaging can be used as a powerful tool to investigate the ascent of sap in the xylem vessels at a resolution higher than that of MRI.

  • PDF

Synchrotron X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Leaf Using Synchrotron X-ray Micro Imaging Technique)

  • 김양민;이상준
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1612-1617
    • /
    • 2003
  • Synchrotron X-ray micro imaging technique was employed to non-invasively monitor the water flow inside xylem vessels in a bamboo leaf. The phase contrast X-ray images clearly visualized plant anatomy and the rise of a water front inside the vessels. Consecutive X-ray images taken for 60 seconds revealed water rise kinetics against gravity in the xylem of a cut dry leaf taken from a bamboo tree. For the first time, traces of water rise, variation of contact angle between water and xylem wall as well as the internal structure of xylem were obtained. In xylem vessels, a repeating flow pattern has a typical flow velocity of 30.7$\mu\textrm{m}$/s and faster flow is established intermittently. It is concluded that the transmission type of X-ray micro imaging can be used as a powerful tool to investigate the ascent of sap in the xylem vessels at a resolution higher than that of MRI.

X-ray 미세 영상기법을 이용한 미세기포의 크기 및 속도 동시측정 (Synchrotron X-ray Micro-imaging Technique for Simultaneous Measurement of Size and Velocity of Micro-bubbles)

  • 김석;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1744-1748
    • /
    • 2004
  • It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}=2.7mm$) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.

  • PDF

X-ray 미세 영상기법을 이용한 미세기포의 크기 및 속도 동시 측정기술 개발 (X-ray Micro-Imaging Technique for Simultaneous Measurement of Size and Velocity of Micro-Bubbles)

  • 김석;이상준
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.659-664
    • /
    • 2004
  • It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of 20∼60$\mu\textrm{m}$ diameter moving upward in an opaque tube (${\Phi}$=2.7mm) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.

X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구 (X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube)

  • 이상준;김석;백부근
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF

X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Using X-ray Micro-imaging Technique)

  • 김양민;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1693-1696
    • /
    • 2004
  • Synchrotron X-ray micro-imaging technique was employed to monitor non-invasively the refilling process of water inside the xylem vessels in bamboo leaves. The consecutive phase-contrast X-ray images clearly show both plant anatomy and the transport of water inside the xylem vessels. Traces of water-rise, vapor bubbles and variations of contact angle between the water front and the xylem wall were measured in real time. During the refilling process, air bubbles are removed when the rising water front halts at a vessel end for a while. Subsequently, it starts rising again at a higher velocity than the normal refilling speed. Repeated cavitation seems to deteriorate the refilling ability in xylem vessels. In dark environment, the water refilling process in xylem vessels is facilitated more effectively than in bright illuminated conditions. Finally, X-ray micro-imaging was famed to be a powerful, high resolution, real time imaging tool to investigate the water refilling process in xylem vessels.

  • PDF

가속기 X선 영상기법을 이용한 애기장대 뿌리털의 물 흡수과정 가시화 (Visualization of Water-uptake Process in Excised Roots of Arabidopsis using Synchrotron X-ray Imaging Technique)

  • 황배근;김혜구;이상준
    • 한국가시화정보학회지
    • /
    • 제8권4호
    • /
    • pp.48-53
    • /
    • 2010
  • Water-uptake through roots, is an essential process of the water flow in plants. Its visualization is very useful for understanding sap flow dynamics at whole plant level. In this study, the tips of Arabidopsis' root hairs were excised and exposed to repeated dehydration and rehydration processes. The water-refilling through individual xylem vessels was visualized using the synchrotron X-ray micro-imaging technique. The high temporal resolution ($2\;{\mu}m$) and beam intensity of the X-ray source allowed to acquisition of consecutive X-ray images of the water-refilling process up to 10 frames/sec. Various flow patterns were observed and the ascending speed of the water-air interfaces was analyzed. The relation between the water-rising height and ascending speed was also analyzed. The present results would provide better alternative for investigating sap flows in roots.

미세 X선 단층촬영 기법의 개발과 적용 (Development of X-ray Micro Computed Tomography and Applications)

  • 김승곤;임재홍;김보흠;이의재;이상준
    • 한국가시화정보학회지
    • /
    • 제8권2호
    • /
    • pp.45-50
    • /
    • 2010
  • The objective of this study is to elucidate the feasibility of synchrotron X-ray micro CT as a non-destructive imaging method to visualize the three-dimensional morphological structures of biological and non-biological samples. The experiments were conducted in 7B2 X-ray micro CT beamline in Pohang Accelerate Laboratory (PAL). A rotational 3-axis stage was specially designed for $0^{\circ}-180^{\circ}$ scanning of test samples. Preliminary tests were performed for opaque samples including a mosquito head, a plant seed and gas diffusion layer (GDL) of polymer electrolyte fuel cell to verify the feasibility of the X-ray micro CT. It visualized clearly the internal structure of all the test samples, supporting its usefulness.

경 엑스선 위상차 현미경을 이용한 유방 조직의 방사광 영상 (Synchrotron Radiation Imaging of Breast Tissue Using a Phase-contrast Hard X-ray Microscope)

  • 정영주;봉진구;박성환
    • 한국의학물리학회지:의학물리
    • /
    • 제22권3호
    • /
    • pp.117-123
    • /
    • 2011
  • 방사광 영상은 내부가 보이지 않는 생물학적 검체의 구조를 관찰하는데 사용될 수 있으며, 조직의 고정이나 염색없이 비침습적으로 조직의 미세 구조를 관찰하는데 유용하다. 본 연구에서는 포항방사광가속기의 1B2 빔라인에서 개발한 경엑스선(hard X-ray) 현미경을 이용하여 11.1 KeV의 에너지에서 인간 유방 조직의 현미경적 영상을 얻고자 하였으며, 고해상도의 영상을 얻기 위해 동심원 회전판(zone plate)과 위상차 영상기법을 사용하였다. 실험 결과 경 엑스선 현미경을 이용하여 유방 섬유낭성변화와 유방암 조직의 방사광 미세 영상을 얻었으며, 이들 영상의 공간 해상도는 60 nm로 각각의 유방 조직의 미세 구조를 관찰하기에 충분하였다. 또한 방사광 미세 영상과 기존의 유방촬영 영상을 비교하였을 때, 방사광 미세 영상에서 각 조직의 특징적인 형태학적 변화가 더 뚜렷하게 나타나는 것을 관찰할 수 있었다. 결론적으로, 경엑스선 위상차 현미경을 이용한 방사광 영상은 유방 질환의 진단에 많은 도움을 줄 수 있을 것으로 생각되며, 임상적으로나 여러 연구 목적으로 유용하게 사용될 수 있을 것으로 기대된다.

Synchrotron X-선을 이용한 Micrometer 공간 분해능 영상시스템 (Micrometer Spatial Resolution Imaging System Using Synchrotron X-ray)

  • 홍진오;정해조;정하규;제정호;김은경;유형식;김희중
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권2호
    • /
    • pp.165-169
    • /
    • 2001
  • 최근 포항 방사광 가속기 연구소에 미세구조 X-선 영상 실험을 위한 5C1 방사광(Synchrtoron Radiation) 빔라인이 건설되었다. 광대역의 에너지 스펙트럼을 가진 방사광 X-선이 물체를 투과한 후 CdWO$_{4}$ scintillator에 의해 가시광선으로 바뀌고, 그 빛을 CCD 카메라로 받아들여 영상을 획득하게 된다. 방사광 X-선은 일반 의료진단용 X-선에 비하여 위상이 일치하고, 평행하며, 그 양이 풍부한 특성들을 갖고 있다. 방사광 영상시스템과 X-선 유방촬영 시스템에서 영상을 획득하여 영상특성들을 비교, 분석하였다. 고-분해능 X-선 시험 패턴(20 line pairs mm$^{-1}$), 유방촬영 팬텀, 파라핀에 고정한 인체 유방암조직과 포르말린에 고정한 인체 유방암조직, 그리고 capillary tube내 micro-bubbles등의 방사광 영상은 기존의 X-선 유방촬영시스템에서 얻은 영상보다 분해능이 뛰어나고 영상질도 우수하였다. 방사광 X-선 영상시스템은 micrometer 공간 분해능 영상을 획득할 수 있어 많은 기초분야의 영상연구와 의료영상분야에서도 활발하게 활용될 것으로 기대된다.

  • PDF