• Title/Summary/Keyword: Synchronous motors

Search Result 433, Processing Time 0.031 seconds

Optimal Design for Starting -Torque of Line-Start Permanent Magnet Synchronous Motors (직립 기동 영구자석 동기전동기의 기동토크 최적화 설계)

  • Kim, Byong-Kuk;Moon, Ji-Woo;Kim, Mi-Jung;Lee, Byung-Jun;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1390-1396
    • /
    • 2007
  • The line-start permanent magnet synchronous motor has a high efficiency and an advantage in constant speed operation regardless of the effect of load variation. However, it is difficult to predict the performance of characteristics accurately, because of the unbalanced starting torque with the initial starting position of the rotor and the generation of a break torque. In this paper the dynamic characteristics of the line-start permanent magnet synchronous motor are described and compared with those of the squirrel-cage induction motor through the simulation to find the characteristics of the permanent magnets and the rotor bars in the line-start permanent magnet synchronous motor. Finally this paper gives the comparison between the simulation results and the experimental results.

A Novel Parameter Estimation Algorithm for Interior Permanent-Magnet Synchronous Motors (매입형 영구자석 동기전동기를 위한 새로운 전동기 상수 추정 방법)

  • Lim, Dong-Chan;Lee, Dong-Myung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.289-295
    • /
    • 2013
  • It is important to know exact values of Interior Permanent Magnet Synchronous Motors(IPMSM)' parameters such as stator resistance and inductance in order to have their high performance. This paper proposes a novel motor parameter(stator resistance, d&q axis inductance) estimation algorithm for IPMSM. The proposed estimation method utilizes back-EMF equations and model reference adaptive system(MRAS). The algorithm using back-EMF estimates d and q axis inductances in the constant torque region, and the stator resistance is estimated by using MRAS with the estimated inductance regardless of speed regions. The validity of the proposed algorithm is verified by simulations and experiments.

Efficiency Maximized Design of Interior Permanent Magnet Synchronous Motors (매입형 영구자석 동기전동기의 효율 최대화 설계)

  • Sim, Dong-Joon;Park, Hyun-Soo;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.101-104
    • /
    • 1991
  • Design characteristics of Interior Permanent Magnet Synchronous Motors are induced. In order to maximize the efficiency of the motor, the objective function is taken stator winding and core losses. And using Sequential Unconstrained Minimization Technique, the dimensions of the motor are obtained which minimize the objective function. Characteristics of the motor which is designed as above are compared with the conventional one.

  • PDF

Analysis for the Thermal Behavior of Synchronous Linear Motor by EEM (FEM을 이용한 동기식 리니어모터 열특성의 해석)

  • Eun, In-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1461-1471
    • /
    • 2002
  • Linear motor has a lot of advantages in comparison with conventional feed mechanisms: high velocity, high acceleration, good positioning accuracy and a long lifetime. An important disadvantage of linear motor is its high power loss and heating up of motor and neighboring machine components in operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper Finite-Element-Method for the thermal behavior of synchronous linear motor is introduced, which is useful for the design and manufacturing of linear motors. By modeling the linear motor the orthotropic physical properties of the sheet metal and windings were considered and convective coefficient in the water cooler and to the surroundings was defined by analytical and experimental method. The calculated isothermal lines could analyze the heat flow in the linear motor.

Characteristic analysis of Interior Permanent Magnet Synchronous Motors Considering Voltage Harmonics (전압 고조파를 고려한 매입형 영구자석 동기전동기의 d-q 등가회로 해석)

  • Kwon, Soon-O;Lee, Geun-Ho;Lee, Woo-Taik;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.985-986
    • /
    • 2011
  • This paper deals with d-q axis equivalent circuit analysis of IPMSM(Interior Permanent Magnet Synchronous Motors) considering voltage harmonics. In the field weakening region, as the current vector angle increased, back-emf contains large harmonics, therefore, significant underestimation of voltage or overestimation of speed can be occurred from the conventional d-q axis equivalent circuit analysis. In order to consider the effects of voltage harmonics, a harmonic coefficient is introduced and verified by experiments.

  • PDF

Investigation on Characteristics of Interior Permanent Magnet Synchronous Motor according to Pole-Slot Combination (매입형 영구자석 동기전동기의 극 수 슬롯 수 조합에 따른 특성에 관한 연구)

  • Bahn, Ji-Hyung;Kwon, Soon-O;Ha, Seung-Hyonng;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.771-772
    • /
    • 2006
  • Recently, Interior Permanent Magnet Synchronous Motor(IPMSM) is widely used in the industry applications such as power train for hybrid vehicles and compressor motors of air-conditioner due to its high power density and wide speed range. In designing motors, pole slot combination should be chosen properly according to the use of the motor and driving method in the initial design stage, accordingly there have been many researches about pole slot combination. As a part of the studies, this paper presents a comparison of characteristics of concentrated winding IPMSM, such as back-emf, Total Harmonic Distortion(THD) and core losses for each pole slot combination. By comparing the characteristics of each model, this paper can be a guide or reference in determining pole slot combination in the initial design stage.

  • PDF

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm

  • Yoon, Jae-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2262-2270
    • /
    • 2015
  • Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.

Speed sensorless control for Interior permanent magnet synchronous motors based on the fuzzy gain compensator (퍼지 이득 보상기틀 이용한 매입형 영구자석 동기전동기의 속도 센서리스 제어)

  • Kang, Hyoung-Seok;Shin, Jae-Hwa;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.180-182
    • /
    • 2007
  • An interior permanent magnet synchronous motors (IPMSM) are receiving increased attention for many industrial applications because of its high torque to inertia ratio, superior power density, and high efficiency. This paper presents algorithm for speed sensorless control based on an adaptive binary observer adding the fuzzy gain compensator. Effectiveness of algorithm is confirmed by the experiments.

  • PDF

Time Delay Limit of Over Current Relay for Maintaining Stability in Industrial Power Systems (산업용 전력계통의 안정도 유지를 위한 과전류계전기의 시간지연 한계)

  • Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.190-192
    • /
    • 2002
  • The industrial power distribution system is a radial system and therefore usually protected with time delayed over current relays (OCR's). Proper time dial settings are provided at the OCR's. Meanwhile, the systems, where synchronous generator, or synchronous motors, or large induction motors are operating, can not be protected with only OCR's with time grading. This paper presents a technical limit and a suitable range of time delay in applying OCR's to clearing faults in the industrial power systems for maintaining stability. Dynamic simulations are made to show them employing a real power systems of a large petro-chemical complex.

  • PDF

High Performance Current Control Scheme of IPM Motors with Physical Limitation of Stator Voltages (전압 제한을 고려한 매입형 영구자석 전동기의 고성능 전류 제어)

  • Lee, Joo-Young;Ahn, Byoung-Gyo;Ha, In-Joong;Song, In-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.72-76
    • /
    • 1997
  • Interior permanent magnet synchronous motors can be applied to applications requiring wide-speed operation. The current control scheme of an interior permanent magnet synchronous (IPM) motor via feedback linearizing technique is proposed. As the available voltage controlling the armature current is small in transient operations and/or flux-weakening region, the current control performance can be deteriorated. The high performance overmodulation strategy is also proposed to improve the current responses. The control performances are confirmed by simulations.

  • PDF