• 제목/요약/키워드: Synchronous PI current regulator

검색결과 19건 처리시간 0.017초

약계자 영역에서 외부 전압제어 루프에 의한 매입형 영구자석 동기전동기의 최대 토오크 운전 (Outer Voltage Regulation Loop for Maximum Torque Operation of Interior Permanent Magnet Synchronous Motor in the Flux)

  • 김장목;설승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.121-123
    • /
    • 1997
  • A novel flux-weakening scheme for the Interior Permanent Magnet Synchronous Motor (IPMSM) is proposed. This is implemented based on the output of the synchronous PI current regulator-reference voltage to the PWM inverter. Attractive features of this flux weakening scheme include no dependency on the machine parameters, the guarantee of current regulation at any operating condition, and smooth and fast transition into and out of the flux weakening mode without a discontinuity. Experimental results are presented to verify the feasibility of the proposed control scheme.

  • PDF

혼합형 디지털 자동 전압 조정 장치를 이용한 선박용 동기발전기의 출력전압제어 (Voltage Control of a Synchronous Generator for Ship using a Compound Type Digital AVR)

  • 박상훈;이상석;유재성;이수원;원충연
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.397-403
    • /
    • 2009
  • In this paper, an exciter current control of a synchronous generator for ships using a compound type digital automatic voltage regulator (DVAR) in order to provide a constant output voltage of the generator is presented. The compound type DAVR is composed of a controller part to adjust output voltage and an power source unit to supply power to the exciter. The controller part, which generates the PWM switching pattern via the PI controller, drives a power MOSFET for bypass to limit the SG's exciter current. The power source unit part is parallel connected to an output terminal of the generator through a reactor and a power CT. The residual magnetic flux of SG provides exciter current to the exciter through the reactor during the initial running or no load state and load current supplies field current to the exciter through the power CT during loading state. This paper confirmed an experiment to verify the validity of compound type DAVR system for controlling output voltage of synchronous generator.

A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

  • Shen, Hanlin;Luo, Xin;Liang, Guilin;Shen, Anwen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1708-1719
    • /
    • 2018
  • A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

회전자 위치 추정 PI 제어기를 이용한 PMSM 센서리스 제어 (Sensorless Control of PMSM using Rotor Position Tracking PI Controller)

  • 이종건;석줄기;이동춘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.176-178
    • /
    • 2003
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to aero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF

Sensorless vector control for super-high speed PMSM drive

  • Bae Bon-Ho;Sul Seung-Ki;Kwon Jeong-Hyeck;Shin Jong-Sub
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.773-778
    • /
    • 2001
  • This paper describes the implementation of the vector control schemes for a variable-speed 131kW PMSM (Permanent Magnet Synchronous Motor) in super-high speed application. The vector control with synchronous reference frame current regulator has been implemented with the challenging requirements such as the extremely low stator inductance$(28^{\mu}H)$, the high dc link voltage(600V) and the high excitation frequency(1.2kHz). Because the conventional position sensor is not reliable in super-high speed, a vector control scheme without any position sensor has been proposed. The proposed sensorless algorithm is implemented by processing the output voltage of the PI current regulator, and hence the structure is simple and the estimated speed is robust to the measurement noise. The experimental system has been built and the proposed control has been implemented and evaluated. The test result, up to the speed of 60,000 r/min, shows the validity of the proposed control.

  • PDF

비례공진 제어기를 이용한 단상 계통연계형 인버터의 데드타임 영향과 옵셋 오차로 인한 전류맥동 저감에 관한 연구 (A Study on Current Ripple Reduction Due to Offset Error and Dead-time Effect of Single-phase Grid-connected Inverters Based on PR Controller)

  • 성의석;황선환
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.201-208
    • /
    • 2015
  • The effects of dead-time and offset error, which cause output current distortion in single-phase grid-connected inverters are investigated this paper. Offset error is typically generated by measuring phase current, including the voltage unbalance of analog devices and non-ideal characteristics in current measurement paths. Dead-time inevitably occurs during generation of the gate signal for controlling power semiconductor switches. Hence, the performance of the grid-connected inverter is significantly degraded because of the current ripples. The current and voltage, including ripple components on the synchronous reference frame and stationary reference frame, are analyzed in detail. An algorithm, which has the proportional resonant controller, is also proposed to reduce current ripple components in the synchronous PI current regulator. As a result, computational complexity of the proposed algorithm is greatly simplified, and the magnitude of the current ripples is significantly decreased. The simulation and experimental results are presented to verify the usefulness of the proposed current ripple reduction algorithm.

3상 대칭 시스템의 최단시간 전류제어 (Minimum Time Current Control in 3-Phase Balanced Systems)

  • 최종우;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권6호
    • /
    • pp.313-320
    • /
    • 2002
  • In this paper, a new current controller with fast transient response is Proposed. The basic concept is to find the optimal control voltage for tracking the reference current with minimum time under the voltage limit constraint. The generalized solution of the minimum time current control in the systems are presented in this paper. With the generalized solution, the minimum time current controller can be easily applied to all the 3-phase balanced system. Through the simulation and the experiment, it is observed that the proposed controller has much less transient time than the conventional synchronous PI regulator.

모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어 (Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator)

  • 김준식;우희진;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

FPGA를 이용한 영구자석 동기 전동기 벡터 제어기의 구현 (Implementation of Vector Controller for PMSM Using FPGA)

  • 김석환;임정규;서은경;신휘범;이현우;정세교
    • 전력전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.127-134
    • /
    • 2006
  • 고성능 DSP 또는 마이크로프로세서를 통해 구현되던 벡터제어를 프로그램이 가능한 소자인 FPGA를 통해 하드웨어로 구현하였다. 이를 위해 벡터제어 알고리즘을 구성하는 제어 블록들을 VHDL을 통해 모듈화 하고, 모듈화한 벡터제어 알고리즘을 FPGA에 프로그래밍 하여 하드웨어 벡터제어기를 구현하였다. 그리고 하드웨어 벡터제어기의 성능을 검증하기 위해 영구자석 동기 전동기 구동을 위한 벡터제어 시스템을 구성하고, 소프트웨어 기반 벡터제어 시스템과 벡터제어 알고리즘 연산시간 및 성능에 대한 비교연구를 수행하였다.