• Title/Summary/Keyword: Synaptogenesis

Search Result 23, Processing Time 0.023 seconds

Actin filaments in synaptic transmission and synaptogenesis

  • Chang, Sunghoe
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.24-24
    • /
    • 2003
  • Actin filament is a major cytoskeleton in synapses and highly enriched in the presynaptic and postsynaptic compartments. Their roles in synaptic vesicle recycling and synaptogenesis have been extensively studied but functional evidence whether actin filaments are involved in these processes is as yet lacking. Dysfunction in synaptic vesicle recycling causes various diseases such as Alzheimer's disease, Schizophrenia, Bipolar disease, depression etc.

  • PDF

Pathogenic Molecular Mechanisms of Glutamatergic Synaptic Proteins in Alzheimer's Disease (알츠하이머 병과 글루타메이트성 시냅스 단백질의 분자적 질환 기전)

  • Yang, Jin-Hee;Oh, Dae-Young
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.4
    • /
    • pp.194-202
    • /
    • 2010
  • Alzheimer's disease(AD) is the most common neurodegenerative disorder and constitutes about two thirds of dementia. Despite a lot of effort to find drugs for AD worldwide, an efficient medicine that can cure AD has not come yet, which is due to the complicated pathogenic pathways and progressively degenerative properties of AD. In its early clinical phase, it is important to find the subtle alterations in synapses responsible for memory because symptoms of AD patients characteristically start with pure impairment of memory. Attempts to find the target synaptic proteins and their pathogenic pathways will be the most powerful alternative strategy for developing AD medicine. Here we review recent progress in deciphering the role of target synaptic proteins related to AD in hippocampal glutamatergic synapses.

Structural Basis for LAR-RPTP-Mediated Synaptogenesis

  • Won, Seoung Youn;Kim, Ho Min
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.622-630
    • /
    • 2018
  • Leukocyte common antigen-related protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that regulate neurite outgrowth and neuronal regeneration. LAR-RPTPs have also received particular attention as the major presynaptic hubs for synapse organization through selective binding to numerous postsynaptic adhesion partners. Recent structural studies on LAR-RPTP-mediated trans-synaptic adhesion complexes have provided significant insight into the molecular basis of their specific interactions, the key codes for their selective binding, as well as the higher-order clustering of LAR-RPTPs necessary for synaptogenic activity. In this review, we summarize the structures of LAR-RPTPs in complex with various postsynaptic adhesion partners and discuss the molecular mechanisms underlying LAR-RPTP-mediated synaptogenesis.

Increase of Synapsin I, Phosphosynapsin (ser-9), and GAP-43 in the Rat Hippocampus after Middle Cerebral Artery Occlusion

  • Jung, Yeon-Joo;Huh, Pil-Woo;Park, Su-Jin;Park, Jung-Sun;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.77-81
    • /
    • 2004
  • The loss of neurons and synaptic contacts following cerebral ischemia may lead to a synaptic plastic modification, which may contribute to the functional recovery after a brain lesion. Using synapsin I and GAP-43 as markers, we investigated the neuronal cell death and the synaptic plastic modification in the rat hippocampus of a middle cerebral artery occlusion (MCAO) model. Cresyl violet staining revealed that neuronal cell damage occurred after 2 h of MCAO, which progressed during reperfusion for 2 weeks. The immunoreactivity of synapsin I and GAP-43 was increased in the stratum lucidum in the CA3 subfield as well as in the inner and outer molecular layers of dentate gyrus in the hippocampus at reperfusion for 2 weeks. The immunoreactivity of phosphosynapsin was increased in the stratum lucidum in the CA3 subfield during reperfusion for 1 week. Our data suggest that the increase in the synapsin I and GAP-43 immunoreactivity probably mediates either the functional adaptation of the neurons through reactive synaptogenesis from the pre-existing presynaptic nerve terminals or the structural remodeling of their axonal connections in the areas with ischemic loss of target cells. Furthermore, phosphosynapsin may play some role in the synaptic plastic adaptations before or during reactive synaptogenesis after the MCAO.

Ethanol Induces Cell Death by Activating Caspase-3 in the Rat Cerebral Cortex

  • Han, Jae Yoon;Joo, Yeon;Kim, Yoon Sook;Lee, Young Ki;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Kang, Sang Soo
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.189-195
    • /
    • 2005
  • Ethanol has long been implicated in triggering apoptotic neurodegeneration. We examined the effects of ethanol on the rat brain during synaptogenesis when a spurt in brain growth occurs. This period corresponds to the first 2 postnatal weeks in rats and is very sensitive to ethanol exposure. Ethanol was administered subcutaneously to 7-day- postnatal rat pups by a dosing regimen of 3 g/kg at 0 h and again at 2 h. Blood ethanol levels peaked ($677{\pm}16.4mg/dl$) at 4 h after the first ethanol administration. The cerebral cortexes of the ethanol-treated group showed several typical symptoms of apoptosis such as chromosome condensation and disintegration of cell bodies. Activated caspase-3 positive cells were found in the cortex within 2 h of the first injection, and reached a peak at 12 h. In addition, TUNEL staining revealed DNA fragmentation in the same regions. These results demonstrate that acute ethanol administration causes neuronal cell death via a caspase-3-dependent pathway within 24 h, suggesting that activation of caspase-3 is a marker of the developmental neurotoxicity of ethanol.

Psychiatric Implication of Synaptic Adhesion Molecules and Scaffold Proteins (시냅스 접착 단백질과 구조 단백질의 정신과적 의의)

  • Oh, Daeyoung
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.3
    • /
    • pp.119-126
    • /
    • 2010
  • Synaptic adhesion molecules mediate synapse formation, maturation and maintenance. These proteins are localized at synaptic sites in neuronal axons and dendrites. These proteins function as a bridge of synaptic cleft via interaction with another synaptic adhesion molecules in the opposite side. They can interact with scaffold proteins via intracellular domain and recruit many synaptic proteins, signaling proteins and synaptic vesicles. Scaffold proteins function as a platform in dendritic spines or axonal terminals. Recently, many genetic studies have revealed that synaptic adhesion molecules and scaffold proteins are important in neurodevelopmental disorders, psychotic disorders, mood disorders and anxiety disorders. In this review, fundamental mechanisms of synapse formation and maturation related with synaptic adhesion molecules and scaffold proteins are introduced and their psychiatric implications addressed.

Silver Impregnation and Electron Microscopic Studies on the Synapse in the Visual Cortex of Rat during Postnatal Development (성장기 흰쥐 시각피질의 신경연접에 대한 도은법 및 전자현미경적 연구)

  • Lee, Hee-Lai
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.347-355
    • /
    • 1997
  • These studies were performed to observe the morphological changes of synapses in the visual cortex of rat during early postnatal development. Specimens of the visual cortex were taken from rats (Sprague Dawley) at 1, 3, 7, 14 and 21 days of age, and prepared for silver impregnation and electron microscopy. The number of synapse and the length of postsynaptic thickening were increased progressively with age, especially 14 and 21 days. The number of dendritic spine was increased conspicuously on postnatal days 14-21. And asymmetic, curved and axo-spinous synapses were increased markedly at the same ages. The present findings suggest that spurt of synaptogenesis in the rat visual cortex occurs during early postnatal development, especially in second to 3rd week period and asymmetric and/or curved axo-spinous synapse is a matured form of synapse with advanced age.

  • PDF

Glucocorticoid Regulation of Gene Expression in Hippocampal CA3 and Dentate Gyrus (글루코코티코이드 호르몬에 의한 뇌해마의 CA와 Dentate Gyrus 부분의 유전자 발현 변화)

  • Kim, Dong-Sub;Ahn, Soon-Cheol;Kim, Young-Jin;Park, Byoung-Keun;Ahn, Yong-Tae;Kim, Ji-Youn;Kyoji, Morita;Her, Song
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.305-311
    • /
    • 2007
  • Glucocorticoids (GCs) alter metabolism, synaptogenesis, apoptosis, neurogenesis, and dendritic morphology in the hippocampus. To better understand how glucocorticoids regulate these aspects of hippocampal biology, we studied gene expression patterns in the CA3 (Hippocampal pyramidal cell field CA3) and dentate gyrus (DG). Litter-matched Lewis inbred rats treated for 20 days with either 9.5 mg per day sustained-release corticosterone or placebo pellets were compared with high-density oligonucleotide microarray analysis (Rat Neurobiology U34 Arrays, Affymetrix). In placebo-treated rats, 32 genes were expressed at greater levels in CA3 than DG, whereas 3 genes were expressed at great levels in DC than CA3. Regional differences were also apparent in corticosterone-induced changes in the hippocampal transcriptome. Six genes in CA3 and 41 genes in DC were differentially regulated by corticosterone. As per the glucocorticoid effects on gene transcription in the brain, forty three of these genes were upregulated, and 4 genes were downregulated. Genes differentially expressed in hippocampus included those for 13 neurotransmitter proteins, 5 ion channel related proteins, 4 transcription factors, 3 neurotrophic factors, 1 cytokine, 1 apoptosis related protein, and 5 genes involved in synaptogenesis. Interestingly, GCs can have suppressive effects on brain BDNF mRNA transcription, one of the neurotrophic factors. These results indicate the diversity of targets affected by chronic exposure to corticosterone and highlight important regional differences in hippocampal neurobiology.

Effects of Taro Extract on Brain Resilience in In Vitro Parkinson's Disease Model Induced by 6-Hydroxydopamine (6-Hydroxydopamine로 유도된 In Vitro 파킨슨병 모델에서 토란추출물의 Brain Resilience에 미치는 영향)

  • Cho, Hyeyoung;Kang, Kyoungah
    • Journal of Korean Biological Nursing Science
    • /
    • v.22 no.4
    • /
    • pp.223-231
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the effects of taro extract on brain resilience in in vitro Parkinson's disease model induced by 6-hydroxydopamine (6-OHDA). Methods: To induce a neuroinflammatory reaction and the in vitro Parkinson's disease model, SH-SY5Y cells were stimulated with lipopolysaccharide (LPS) and 6-OHDA, respectively. After that, cells were treated with at various concentrations (1, 5, and 10 mg/mL) of taro extract. Then nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), interleukin (IL)-6, synaptophysin (SYP) and growth associated protein (GAP)-43 messenger ribonucleic acid (mRNA) expression level were measured. Results: Taro extract significantly suppressed LPS-induced NO production. Meanwhile, iNOS and IL-6 mRNA expression decreased in a dose-dependent manner. In addition, taro increased the mRNA expression of SYP and GAP-43 mRNA. Conclusion: These findings indicate that taro played an important role in brain resilience by inhibiting neuronal cell death and promoting neurite outgrowth, synaptogenesis, and neural plasticity. The results of this study suggest that taro may contribute to the prevention of neurodegenerative disease and become a new and safe therapeutic strategy for Parkinson's disease.