• 제목/요약/키워드: Synaptic plasticity

검색결과 133건 처리시간 0.029초

Responsiveness of Dendrites to the Glutamate Applied Focally with Pressure Ejector and Iontophoresis into Hippocampal Slices

  • Kim, Jin-Hyuk;Shin, Hong-Kee;Chang, Hyun-Ju;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권6호
    • /
    • pp.457-466
    • /
    • 2001
  • Glutamate is the most common excitatory amino acid in the brain. Responsiveness of dendrites to the glutamate greatly varies depending on the application sites. Especially, a point of the maximal response to the glutamate of the dendrite is called as 'hot spot'. In our experiment, the responsiveness of the hot spot to the glutamate was investigated in the CA1 pyramidal neuron of the rat hippocampal slice. CNQX, the antagonist of AMPA receptor, blocked 95% of membrane current to the glutamate focal application $(I_{gl}).$ Train ejection of glutamate on one point of the dendrite increased or decreased the amplitude of $I_{gl}$ with the pattern of train, and the changes were maintained at least for 30 min. In some cases, glutamate train ejection also induced calcium dependent action potentials. To evoke long-term change of synaptic plasticity, we adopted ${\theta}-burst$ in the glutamate train ejection. The ${\theta}-burst$ decreased the amplitude of glutamate response by 60%. However, after ${\theta}-burst$ glutamate train ejection, the calcium dependent action potential appeared. These results indicated that the focal application of glutamate on the neuronal dendrite induced response similar to the synaptic transmission and the trains of glutamate ejection modulated the change of AMPA receptor.

  • PDF

Neuronal Activity-Dependent Regulation of MicroRNAs

  • Sim, Su-Eon;Bakes, Joseph;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.511-517
    • /
    • 2014
  • MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may finetune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.

Adult hippocampal neurogenesis and related neurotrophic factors

  • Lee, Eu-Gene;Son, Hyeon
    • BMB Reports
    • /
    • 제42권5호
    • /
    • pp.239-244
    • /
    • 2009
  • New neurons are continually generated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles of the adult brain. These neurons proliferate, differentiate, and become integrated into neuronal circuits, but how they are involved in brain function remains unknown. A deficit of adult hippocampal neurogenesis leads to defective spatial learning and memory, and the hippocampi in neuropsychiatric diseases show altered neurogenic patterns. Adult hippocampal neurogenesis is not only affected by external stimuli but also regulated by internal growth factors including BDNF, VEGF and IGF-1. These factors are implicated in a broad spectrum of pathophysiological changes in the human brain. Elucidation of the roles of such neurotropic factors should provide insight into how adult hippocampal neurogenesis is related to psychiatric disease and synaptic plasticity.

Role of Carbon Monoxide in Neurovascular Repair Processing

  • Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.93-100
    • /
    • 2018
  • Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). Endogenous CO production occurring at low concentrations is thought to have several useful biological roles. In mammals, especially humans, a proper neurovascular unit comprising endothelial cells, pericytes, astrocytes, microglia, and neurons is essential for the homeostasis and survival of the central nervous system (CNS). In addition, the regeneration of neurovascular systems from neural stem cells and endothelial precursor cells after CNS diseases is responsible for functional repair. This review focused on the possible role of CO/HO in the neurovascular unit in terms of neurogenesis, angiogenesis, and synaptic plasticity, ultimately leading to behavioral changes in CNS diseases. CO/HO may also enhance cellular networks among endothelial cells, pericytes, astrocytes, and neural stem cells. This review highlights the therapeutic effects of CO/HO on CNS diseases involved in neurogenesis, synaptic plasticity, and angiogenesis. Moreover, the cellular mechanisms and interactions by which CO/HO are exploited for disease prevention and their therapeutic applications in traumatic brain injury, Alzheimer's disease, and stroke are also discussed.

Nano-Resolution Connectomics Using Large-Volume Electron Microscopy

  • Kim, Gyu Hyun;Gim, Ja Won;Lee, Kea Joo
    • Applied Microscopy
    • /
    • 제46권4호
    • /
    • pp.171-175
    • /
    • 2016
  • A distinctive neuronal network in the brain is believed to make us unique individuals. Electron microscopy is a valuable tool for examining ultrastructural characteristics of neurons, synapses, and subcellular organelles. A recent technological breakthrough in volume electron microscopy allows large-scale circuit reconstruction of the nervous system with unprecedented detail. Serial-section electron microscopy-previously the domain of specialists-became automated with the advent of innovative systems such as the focused ion beam and serial block-face scanning electron microscopes and the automated tape-collecting ultramicrotome. Further advances in microscopic design and instrumentation are also available, which allow the reconstruction of unprecedentedly large volumes of brain tissue at high speed. The recent introduction of correlative light and electron microscopy will help to identify specific neural circuits associated with behavioral characteristics and revolutionize our understanding of how the brain works.

Dendritic localization and a cis-acting dendritic targeting element of Kv4.2 mRNA

  • Jo, Anna;Nam, Yeon-Ju;Oh, Jun-Young;Cheon, Hyo-Soon;Jeromin, Andreas;Lee, Jin-A;Kim, Hyong-Kyu
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.677-682
    • /
    • 2010
  • Kv4.2, a pore-forming $\alpha$-subunit of voltage-gated A-type potassium channels, is expressed abundantly in the soma and dendrites of hippocampal neurons, and is responsible for somatodendritic $I_A$ current. Recent studies have suggested that changes in the surface levels of Kv4.2 potassium channels might be relevant to synaptic plasticity. Although the function and expression of Kv4.2 protein have been extensively studied, the dendritic localization of Kv4.2 mRNA is not well described. In this study, Kv4.2 mRNAs were shown to be localized in the dendrites near postsynaptic regions. The dendritic transport of Kv4.2 mRNAs were mediated by microtubule-based movement. The 500 nucleotides of specific regions within the 3'-untranslated region of Kv4.2 mRNA were found to be necessary and sufficient for its dendritic localization. Collectively, these results suggest that the dendritic localization of Kv4.2 mRNAs might regulate the dendritic surface level of Kv4.2 channels and synaptic plasticity.

Impaired Hippocampal Synaptic Plasticity and Enhanced Excitatory Transmission in a Novel Animal Model of Autism Spectrum Disorders with Telomerase Reverse Transcriptase Overexpression

  • Rhee, Jeehae;Park, Kwanghoon;Kim, Ki Chan;Shin, Chan Young;Chung, ChiHye
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.486-494
    • /
    • 2018
  • Recently, we have reported that animals with telomerase reverse transcriptase (TERT) overexpression exhibit reduced social interaction, decreased preference for novel social interaction and poor nest-building behaviors-symptoms that mirror those observed in human autism spectrum disorders (ASD). Overexpression of TERT also alters the excitatory/inhibitory (E/I) ratio in the medial prefrontal cortex. However, the effects of TERT overexpression on hippocampal-dependent learning and synaptic efficacy have not been investigated. In the present study, we employed electrophysiological approaches in combination with behavioral analysis to examine hippocampal function of TERT transgenic (TERT-tg) mice and FVB controls. We found that TERT overexpression results in enhanced hippocampal excitation with no changes in inhibition and significantly impairs long-term synaptic plasticity. Interestingly, the expression levels of phosphorylated CREB and phosphorylated $CaMKII{\alpha}$ were significantly decreased while the expression level of $CaMKII{\alpha}$ was slightly increased in the hippocampus of TERT-overexpressing mice. Our observations highlight the importance of TERT in normal synaptic function and behavior and provide additional information on a novel animal model of ASD associated with TERT overexpression.

Characterization of Multiple Synaptic Boutons in Cerebral Motor Cortex in Physiological and Pathological Condition: Acrobatic Motor Training Model and Traumatic Brain Injury Model

  • Kim, Hyun-Wook;Na, Ji eun;Rhyu, ImJoo
    • Applied Microscopy
    • /
    • 제48권4호
    • /
    • pp.102-109
    • /
    • 2018
  • Multiple synaptic boutons (MSBs) have been reported to be synapse with two or more postsynaptic terminals in one presynaptic terminal. These MSBs are known to be increased by various brain stimuli. In the motor cortex, increased number of MSB was observed in both acrobat training (AC) model and traumatic brain injury (TBI) model. Interestingly one is a physiological stimuli and the other is pathological insult. The purpose of this study is to compare the connectivity of MSBs between AC model and TBI model in the cerebral motor cortex, based on the hypothesis that the connectivity of MSBs might be different according to the models. The motor cortex was dissected from perfused brain of each experimental animal, the samples were prepared for routine transmission electron microscopy. The 60~70 serial sections were mounted on the one-hole grid and MSB was analyzed. The 3-dimensional analysis revealed that 94% of MSBs found in AC model synapse two postsynaptic spines from same dendrite. But, 28% MSBs from TBI models synapse two postsynaptic spines from different dendrite. This imply that the MSBs observed in motor cortex of AC model and TBI model might have different circuits for the processing the information.