DOI QR코드

DOI QR Code

Adult hippocampal neurogenesis and related neurotrophic factors

  • Lee, Eu-Gene (Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University) ;
  • Son, Hyeon (Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University)
  • Published : 2009.05.31

Abstract

New neurons are continually generated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles of the adult brain. These neurons proliferate, differentiate, and become integrated into neuronal circuits, but how they are involved in brain function remains unknown. A deficit of adult hippocampal neurogenesis leads to defective spatial learning and memory, and the hippocampi in neuropsychiatric diseases show altered neurogenic patterns. Adult hippocampal neurogenesis is not only affected by external stimuli but also regulated by internal growth factors including BDNF, VEGF and IGF-1. These factors are implicated in a broad spectrum of pathophysiological changes in the human brain. Elucidation of the roles of such neurotropic factors should provide insight into how adult hippocampal neurogenesis is related to psychiatric disease and synaptic plasticity.

Keywords

References

  1. Gould, E., Reeves, A. J., Graziano, M. S. and Gross, C. G. (1999) Neurogenesis in the neocortex of adult primates. Science 286, 548-552 https://doi.org/10.1126/science.286.5439.548
  2. Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433-1438 https://doi.org/10.1126/science.287.5457.1433
  3. Kempermann, G., Kuhn, H. G. and Gage, F. H. (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493-495 https://doi.org/10.1038/386493a0
  4. Miller, M. W. and Nowakowski, R. S. (1988) Use of bromodeoxyuridine- immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Research 457, 44-52 https://doi.org/10.1016/0006-8993(88)90055-8
  5. Lewis, P. F. and Emerman, M. (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510-516
  6. Overstreet, L. S., Hentges, S. T., Bumaschny, V. F., de Souza, F. S., Smart, J. L., Santangelo, A. M., Low, M. J., Westbrook, G. L. and Rubinstein, M. (2004) A transgenic marker for newly born granule cells in dentate gyrus. J. Neurosci. 24, 3251-3259 https://doi.org/10.1523/JNEUROSCI.5173-03.2004
  7. Ming, G. L. and Song, H. (2005) Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223-250 https://doi.org/10.1146/annurev.neuro.28.051804.101459
  8. Zhao, C., Deng, W. and Gage, F. H. (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132, 645-660 https://doi.org/10.1016/j.cell.2008.01.033
  9. Galvao, R. P., Garcia-Verdugo, J. M. and Alvarez-Buylla, A. (2008) Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J. Neurosci. 28, 13368-13383 https://doi.org/10.1523/JNEUROSCI.2918-08.2008
  10. Duman, R. S., Malberg, J. and Nakagawa, S. (2001) Regulation of adult neurogenesis by psychotropic drugs and stress. J. Pharmacol. Exp. Ther. 299, 401-407
  11. Gould, E., Tanapat, P., McEwen, B. S., Flugge, G. and Fuchs, E. (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. U.S.A. 95, 3168-3171 https://doi.org/10.1073/pnas.95.6.3168
  12. Cameron, H. A. and McKay, R. D. (1999) Restoring production of hippocampal neurons in old age. Nat. Neurosci. 2, 894-897 https://doi.org/10.1038/13197
  13. Gould, E., Cameron, H. A., Daniels, D. C., Woolley, C. S. and McEwen, B. S. (1992) Adrenal hormones suppress cell division in the adult rat dentate gyrus. J. Neurosci. 12, 3642-3650
  14. Eisch, A. J., Barrot, M., Schad, C. A., Self, D. W. and Nestler, E. J. (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl. Acad. Sci. U.S.A. 97, 7579-7584 https://doi.org/10.1073/pnas.120552597
  15. van Praag, H., Christie, B. R., Sejnowski, T. J. and Gage, F. H. (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427-13431 https://doi.org/10.1073/pnas.96.23.13427
  16. Shors, T. J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T. and Gould, E. (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372-376 https://doi.org/10.1038/35066584
  17. Tanapat, P., Hastings, N. B., Reeves, A. J. and Gould, E. (1999) Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci. 19, 5792-5801
  18. Malberg, J. E., Eisch, A. J., Nestler, E. J. and Duman, R. S. (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104-9110
  19. Manev, H., Uz, T., Smalheiser, N. R. and Manev, R. (2001) Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur. J. Pharmacol. 411, 67-70 https://doi.org/10.1016/S0014-2999(00)00904-3
  20. Madsen, T. M., Treschow, A., Bengzon, J., Bolwig, T. G., Lindvall, O. and Tingstrom, A. (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol. Psychiatry 47, 1043-1049 https://doi.org/10.1016/S0006-3223(00)00228-6
  21. Chen, G., Rajkowska, G., Du, F., Seraji-Bozorgzad, N. and Manji, H. K. (2000) Enhancement of hippocampal neurogenesis by lithium. J. Neurochem. 75, 1729-1734 https://doi.org/10.1046/j.1471-4159.2000.0751729.x
  22. Sahay, A. and Hen, R. (2007) Adult hippocampal neurogenesis in depression. Nat. Neurosci. 10, 1110-1115 https://doi.org/10.1038/nn1969
  23. Leonardo, E. D., Richardson-Jones, J. W., Sibille, E., Kottman, A. and Hen, R. (2006) Molecular heterogeneity along the dorsal- ventral axis of the murine hippocampal CA1 field: a microarray analysis of gene expression. Neuroscience 137, 177-186 https://doi.org/10.1016/j.neuroscience.2005.08.082
  24. Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G. and Vannier, M. W. (1996) Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. U.S.A. 93, 3908-3913 https://doi.org/10.1073/pnas.93.9.3908
  25. Sapolsky, R. M. (1996) Why stress is bad for your brain. Science 273, 749-750 https://doi.org/10.1126/science.273.5276.749
  26. Campbell, S. and Macqueen, G. (2004) The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci. 29, 417-426
  27. Videbech, P. and Ravnkilde, B. (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am. J. Psychiatry 161, 1957-1966 https://doi.org/10.1176/appi.ajp.161.11.1957
  28. Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C. and Hen, R. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805-809 https://doi.org/10.1126/science.1083328
  29. Revest, J. M., Dupret, D., Koehl, M., Funk-Reiter, C., Grosjean, N., Piazza, P. V. and Abrous, D. N. (2009) Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol. Psychiatry (In press) https://doi.org/10.1038/mp.2009.15
  30. Meshi, D., Drew, M. R., Saxe, M., Ansorge, M. S., David, D., Santarelli, L., Malapani, C., Moore, H. and Hen, R. (2006) Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat. Neurosci. 9, 729-731 https://doi.org/10.1038/nn1696
  31. Jayatissa, M. N., Bisgaard, C., Tingstrom, A., Papp, M. and Wiborg, O. (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31,2395-2404 https://doi.org/10.1038/sj.npp.1301041
  32. Leuner, B., Gould, E. and Shors, T. J. (2006) Is there a link between adult neurogenesis and learning? Hippocampus 16, 216-224 https://doi.org/10.1002/hipo.20153
  33. Kempermann, G. and Gage, F. H. (2002) Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the watermaze task. Eur. J. Neurosci. 16, 129-136 https://doi.org/10.1046/j.1460-9568.2002.02042.x
  34. Lemaire, V., Koehl, M., Le Moal, M. and Abrous, D. N. (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 97, 11032-11037 https://doi.org/10.1073/pnas.97.20.11032
  35. Mirescu, C., Peters, J. D. and Gould, E. (2004) Early life experience alters response of adult neurogenesis to stress. Nat. Neurosci. 7, 841-846 https://doi.org/10.1038/nn1290
  36. Van der Borght, K., Wallinga, A. E., Luiten, P. G., Eggen, B. J. and Van der Zee, E. A. (2005) Morris water maze learning in two rat strains increases the expression of the polysialylated form of the neural cell adhesion molecule in the dentate gyrus but has no effect on hippocampal neurogenesis. Behav. Neurosci. 119, 926-932 https://doi.org/10.1037/0735-7044.119.4.926
  37. Wood, G. E., Beylin, A. V. and Shors, T. J. (2001) The contribution of adrenal and reproductive hormones to the opposing effects of stress on trace conditioning in males versus females. Behav. Neurosci. 115, 175-187 https://doi.org/10.1037/0735-7044.115.1.175
  38. van Praag, H., Shubert, T., Zhao, C. and Gage, F. H. (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680-8685 https://doi.org/10.1523/JNEUROSCI.1731-05.2005
  39. Snyder, J. S., Hong, N. S., McDonald, R. J. and Wojtowicz, J. M. (2005) A role for adult neurogenesis in spatial longterm memory. Neuroscience 130, 843-852 https://doi.org/10.1016/j.neuroscience.2004.10.009
  40. Jessberger, S., Clark, R. E., Broadbent, N. J., Clemenson, G. D., Jr., Consiglio, A., Lie, D. C., Squire, L. R. and Gage, F. H. (2009) Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn. Mem. 16, 147-154 https://doi.org/10.1101/lm.1172609
  41. Poo, M. M. (2001) Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24-32 https://doi.org/10.1038/35049004
  42. Mu, J. S., Li, W. P., Yao, Z. B. and Zhou, X. F. (1999) Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res. 835, 259-265 https://doi.org/10.1016/S0006-8993(99)01592-9
  43. Govindarajan, A., Rao, B. S., Nair, D., Trinh, M., Mawjee, N., Tonegawa, S. and Chattarji, S. (2006) Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc. Natl. Acad. Sci. U.S.A. 103, 13208-13213 https://doi.org/10.1073/pnas.0605180103
  44. Gratacos, M., Soria, V., Urretavizcaya, M., Gonzalez, J. R., Crespo, J. M., Bayes, M., de Cid, R., Menchon, J. M., Vallejo, J. and Estivill, X. (2008) A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J. 8, 101-112 https://doi.org/10.1038/sj.tpj.6500460
  45. Castren, E., Voikar, V. and Rantamaki, T. (2007) Role of neurotrophic factors in depression. Curr. Opin. Pharmacol. 7, 18-21 https://doi.org/10.1016/j.coph.2006.08.009
  46. Huang, T. L., Lee, C. T. and Liu, Y. L. (2008) Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J. Psychiatr Res. 42, 521-525 https://doi.org/10.1016/j.jpsychires.2007.05.007
  47. Nibuya, M., Morinobu, S. and Duman, R. S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539-7547
  48. Sairanen, M., Lucas, G., Ernfors, P., Castren, M. and Castren, E. (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 25, 1089-1094 https://doi.org/10.1523/JNEUROSCI.3741-04.2005
  49. Castren, E. (2004) Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol. 4, 58-64 https://doi.org/10.1016/j.coph.2003.10.004
  50. Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L. and Nestler, E. J. (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519-525 https://doi.org/10.1038/nn1659
  51. Shimazu, K., Zhao, M., Sakata, K., Akbarian, S., Bates, B., Jaenisch, R. and Lu, B. (2006) NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn. Mem. 13, 307-315 https://doi.org/10.1101/lm.76006
  52. Schutte, A., Yan, Q., Mestres, P. and Giehl, K. M. (2000) The endogenous survival promotion of axotomized rat corticospinal neurons by brain-derived neurotrophic factor is mediated via paracrine, rather than autocrine mechanisms. Neurosci. Lett. 290, 185-188 https://doi.org/10.1016/S0304-3940(00)01351-3
  53. Paul, J., Gottmann, K. and Lessmann, V. (2001) NT-3 regulates BDNF-induced modulation of synaptic transmission in cultured hippocampal neurons. Neuroreport 12, 2635-2639 https://doi.org/10.1097/00001756-200108280-00010
  54. Ueyama, T., Kawai, Y., Nemoto, K., Sekimoto, M., Tone, S. and Senba, E. (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci. Res. 28, 103-110 https://doi.org/10.1016/S0168-0102(97)00030-8
  55. Aberg, M. A., Aberg, N. D., Hedbacker, H., Oscarsson, J. and Eriksson, P. S. (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896-2903
  56. Carro, E., Nunez, A., Busiguina, S. and Torres-Aleman, I. (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926-2933
  57. Trejo, J. L., Carro, E. and Torres-Aleman, I. (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628-1634
  58. Khawaja, X., Xu, J., Liang, J. J. and Barrett, J. E. (2004) Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J. Neurosci. Res. 75, 451-460 https://doi.org/10.1002/jnr.10869
  59. Miskowiak, K., Inkster, B., Selvaraj, S., Wise, R., Goodwin, G. M. and Harmer, C. J. (2008) Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration. Neuropsychopharmacology 33, 611-618 https://doi.org/10.1038/sj.npp.1301439
  60. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P., Risau, W. and Ullrich, A. (1993) High affinity VEGF binding anddevelopmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835-846 https://doi.org/10.1016/0092-8674(93)90573-9
  61. Dvorak, H. F. (2006) Discovery of vascular permeability factor (VPF). Exp. Cell Res. 312, 522-526 https://doi.org/10.1016/j.yexcr.2005.11.026
  62. Jin, K., Zhu, Y., Sun, Y., Mao, X. O., Xie, L. and Greenberg,D. A. (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 99, 11946-11950 https://doi.org/10.1073/pnas.182296499
  63. Cao, L., Jiao, X., Zuzga, D. S., Liu, Y., Fong, D. M., Young, D. and During, M. J. (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 36, 827-835 https://doi.org/10.1038/ng1395
  64. Palmer, T. D., Willhoite, A. R. and Gage, F. H. (2000) Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479-494 https://doi.org/10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3
  65. Newton, S. S., Collier, E. F., Hunsberger, J., Adams, D., Terwilliger, R., Selvanayagam, E. and Duman, R. S. (2003) Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J. Neurosci. 23, 10841-10851
  66. Warner-Schmidt, J. L. and Duman, R. S. (2007) VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc. Natl. Acad. Sci. U.S.A. 104, 4647-4652 https://doi.org/10.1073/pnas.0610282104
  67. Altar, C. A., Laeng, P., Jurata, L. W., Brockman, J. A., Lemire, A., Bullard, J., Bukhman, Y. V., Young, T. A., Charles, V. and Palfreyman, M. G. (2004) Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J. Neurosci. 24, 2667-2677 https://doi.org/10.1523/JNEUROSCI.5377-03.2004
  68. Khaibullina, A. A., Rosenstein, J. M. and Krum, J. M. (2004) Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures. Brain Res. Dev. Brain Res. 148, 59-68 https://doi.org/10.1016/j.devbrainres.2003.09.022
  69. Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J. and Palmer, T. D. (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803-2812 https://doi.org/10.1111/j.1460-9568.2003.03041.x
  70. Heine, V. M., Zareno, J., Maslam, S., Joels, M. and Lucassen, P. J. (2005) Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur. J. Neurosci. 21, 1304-1314 https://doi.org/10.1111/j.1460-9568.2005.03951.x
  71. Warner-Schmidt, J. L. and Duman, R. S. (2008) VEGF as a potential target for therapeutic intervention in depression. Curr. Opin. Pharmacol. 8, 14-19 https://doi.org/10.1016/j.coph.2007.10.013
  72. Ransome, M. I. and Turnley, A. M. (2007) Systemically delivered Erythropoietin transiently enhances adult hippocampal neurogenesis. J. Neurochem. 102, 1953-1965
  73. Shingo, T., Sorokan, S. T., Shimazaki, T. and Weiss, S. (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21, 9733-9743
  74. Chen, Z. Y., Asavaritikrai, P., Prchal, J. T. and Noguchi, C. T. (2007) Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J. Biol. Chem. 282, 25875-25883 https://doi.org/10.1074/jbc.M701988200
  75. Adamcio, B., Sargin, D., Stradomska, A., Medrihan, L., Gertler, C., Theis, F., Zhang, M., Muller, M., Hassouna, I., Hannke, K., Sperling, S., Radyushkin, K., El-Kordi, A., Schulze, L., Ronnenberg, A., Wolf, F., Brose, N., Rhee, J. S., Zhang, W. and Ehrenreich, H. (2008) Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biol. 6, 37 https://doi.org/10.1186/1741-7007-6-37
  76. Girgenti, M. J., Hunsberger, J., Duman, C. H., Sathyanesan, M., Terwilliger, R. and Newton, S. S. Erythropoietin Induction by Electroconvulsive Seizure, Gene Regulation, and Antidepressant- Like Behavioral Effects. Biological Psychiatry In Press, Corrected Proof. (In press)
  77. Viviani, B., Bartesaghi, S., Corsini, E., Villa, P., Ghezzi, P., Garau, A., Galli, C. L. and Marinovich, M. (2005) Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor. J. Neurochem. 93, 412-421 https://doi.org/10.1111/j.1471-4159.2005.03033.x
  78. Tonges, L., Schlachetzki, J. C., Weishaupt, J. H. and Bahr, M. (2007) Hematopoietic cytokines--on the verge of conquering neurology. Curr. Mol. Med. 7, 157-170 https://doi.org/10.2174/156652407780059186
  79. Siren, A. L., Radyushkin, K., Boretius, S., Kammer, D., Riechers, C. C., Natt, O., Sargin, D., Watanabe, T., Sperling, S., Michaelis, T., Price, J., Meyer, B., Frahm, J. and Ehrenreich, H. (2006) Global brain atrophy after unilateral parietal lesion and its prevention by erythropoietin. Brain 129, 480-489 https://doi.org/10.1093/brain/awh703
  80. Ransome, M. I. and Turnley, A. M. (2008) Erythropoietin promotes axonal growth in a model of neuronal polarization. Mol. Cell. Neurosci. 38, 537-547 https://doi.org/10.1016/j.mcn.2008.05.002
  81. Ehrenreich, H., Degner, D., Meller, J., Brines, M., Behe, M., Hasselblatt, M., Woldt, H., Falkai, P., Knerlich, F., Jacob, S., von Ahsen, N., Maier, W., Bruck, W., Ruther, E., Cerami, A., Becker, W. and Siren, A. L. (2004) Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol. Psychiatry 9, 42-54 https://doi.org/10.1038/sj.mp.4001442

Cited by

  1. Diallyl disulfide impairs hippocampal neurogenesis in the young adult brain vol.221, pp.1, 2013, https://doi.org/10.1016/j.toxlet.2013.05.013
  2. Antidepressant-Like Effects of GM1 Ganglioside Involving the BDNF Signaling Cascade in Mice vol.19, pp.9, 2016, https://doi.org/10.1093/ijnp/pyw046
  3. Comparison of the Effect of Exercise on Late-Phase LTP of the Dentate Gyrus and CA1 of Alzheimer’s Disease Model vol.53, pp.10, 2016, https://doi.org/10.1007/s12035-015-9612-5
  4. Neuroimmunological Aberrations and Cerebral Asymmetry Abnormalities in Schizophrenia: Select Perspectives on Pathogenesis vol.12, pp.1, 2014, https://doi.org/10.9758/cpn.2014.12.1.8
  5. Mesenchymal Stem Cell Transplantation Promotes Neurogenesis and Ameliorates Autism Related Behaviors in BTBR Mice vol.9, pp.1, 2016, https://doi.org/10.1002/aur.1530
  6. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer’s disease mouse model vol.6, pp.6, 2015, https://doi.org/10.1038/cddis.2015.138
  7. The role of zinc in neurodegenerative inflammatory pathways in depression vol.35, pp.3, 2011, https://doi.org/10.1016/j.pnpbp.2010.02.010
  8. Deletion of Running-Induced Hippocampal Neurogenesis by Irradiation Prevents Development of an Anxious Phenotype in Mice vol.5, pp.9, 2010, https://doi.org/10.1371/journal.pone.0012769
  9. Effects of maternal hypothyroidism during pregnancy on learning, memory and hippocampal BDNF in rat pups: Beneficial effects of exercise vol.329, 2016, https://doi.org/10.1016/j.neuroscience.2016.04.048
  10. Maternal single injection of N-methyl-N-nitrosourea to cause microcephaly in offspring induces transient aberration of hippocampal neurogenesis in mice vol.226, pp.1, 2014, https://doi.org/10.1016/j.toxlet.2014.01.014
  11. Environmental enrichment and working memory tasks decrease hippocampal cell proliferation after wheel running – A role for the prefrontal cortex in hippocampal plasticity? vol.1624, 2015, https://doi.org/10.1016/j.brainres.2015.07.016
  12. Neural Mechanisms of Stress Resilience and Vulnerability vol.75, pp.5, 2012, https://doi.org/10.1016/j.neuron.2012.08.016
  13. Nanomedicine boosts neurogenesis: new strategies for brain repair vol.4, pp.9, 2012, https://doi.org/10.1039/c2ib20129a
  14. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice vol.8, pp.11, 2016, https://doi.org/10.3390/nu8110679
  15. Treadmill exercise ameliorates symptoms of methimazole-induced hypothyroidism through enhancing neurogenesis and suppressing apoptosis in the hippocampus of rat pups vol.31, pp.3, 2013, https://doi.org/10.1016/j.ijdevneu.2013.01.003
  16. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection vol.2017, 2017, https://doi.org/10.1155/2017/7260130
  17. Palmitate-induced Endoplasmic Reticulum stress and subsequent C/EBPα Homologous Protein activation attenuates leptin and Insulin-like growth factor 1 expression in the brain vol.28, pp.11, 2016, https://doi.org/10.1016/j.cellsig.2016.08.012
  18. Treadmill exercise alleviates impairment of spatial learning ability through enhancing cell proliferation in the streptozotocin-induced Alzheimer’s disease rats vol.10, pp.2, 2014, https://doi.org/10.12965/jer.140102
  19. Hippocampal dysfunctions caused by cranial irradiation: A review of the experimental evidence vol.45, 2015, https://doi.org/10.1016/j.bbi.2015.01.007
  20. Long days enhance recognition memory and increase insulin-like growth factor 2 in the hippocampus vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03896-2
  21. Vaccine for the mind vol.8, pp.10, 2012, https://doi.org/10.4161/hv.21649
  22. Sexual activity counteracts the suppressive effects of chronic stress on adult hippocampal neurogenesis and recognition memory vol.1538, 2013, https://doi.org/10.1016/j.brainres.2013.09.007
  23. Chronic binge-like alcohol consumption in adolescence causes depression-like symptoms possibly mediated by the effects of BDNF on neurogenesis vol.254, 2013, https://doi.org/10.1016/j.neuroscience.2013.09.031
  24. Sustained hippocampal neurogenesis in females is amplified in P66Shc−/−mice: An animal model of healthy aging vol.22, pp.12, 2012, https://doi.org/10.1002/hipo.22042
  25. Obestatin promotes proliferation and survival of adult hippocampal progenitors and reduces amyloid-β-induced toxicity vol.422, 2016, https://doi.org/10.1016/j.mce.2015.11.008
  26. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups vol.12, pp.3, 2016, https://doi.org/10.12965/jer.1632638.319
  27. Similar verbal memory impairments in schizophrenia and healthy aging. Implications for understanding of neural mechanisms vol.226, pp.1, 2015, https://doi.org/10.1016/j.psychres.2014.12.062
  28. A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories vol.30, pp.19, 2011, https://doi.org/10.1038/emboj.2011.293
  29. Ethanol-induced epigenetic regulations at the Bdnf gene in C57BL/6J mice vol.20, pp.3, 2015, https://doi.org/10.1038/mp.2014.38
  30. Generating new neurons to circumvent your fears: the role of IGF signaling vol.71, pp.1, 2014, https://doi.org/10.1007/s00018-013-1316-2
  31. Physical exercise and environment exploration affect synaptogenesis in adult-generated neurons in the rat dentate gyrus: Possible role of BDNF vol.1534, 2013, https://doi.org/10.1016/j.brainres.2013.08.023
  32. Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice vol.10, pp.6, 2014, https://doi.org/10.3892/mmr.2014.2644
  33. Therapeutic Potential of Baicalein in Alzheimer’s Disease and Parkinson’s Disease vol.31, pp.8, 2017, https://doi.org/10.1007/s40263-017-0451-y
  34. Neurotrophin Trk receptors in the brain of a teleost fish, Nothobranchius furzeri vol.75, pp.1, 2012, https://doi.org/10.1002/jemt.21028
  35. Effects of hindlimb unloading on neurogenesis in the hippocampus of newly weaned rats vol.509, pp.2, 2012, https://doi.org/10.1016/j.neulet.2011.12.022
  36. The neuritogenic and synaptogenic effects of the ethanolic extract of radix Puerariae in cultured rat hippocampal neurons vol.173, 2015, https://doi.org/10.1016/j.jep.2015.07.013
  37. Adult neurogenesis and brain regeneration in zebrafish vol.72, pp.3, 2012, https://doi.org/10.1002/dneu.20918
  38. Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse vol.190, 2011, https://doi.org/10.1016/j.neuroscience.2011.05.073
  39. The significate of IGF-1 and IGF-1R in reducing PTSD cognitive function symptoms 2017, https://doi.org/10.1016/j.amp.2016.03.023
  40. Spatial separation of visual and vestibular processing in the human hippocampal formation vol.1233, pp.1, 2011, https://doi.org/10.1111/j.1749-6632.2011.06115.x
  41. Ipsilateral versus contralateral spontaneous post-stroke neuroplastic changes: Involvement of BDNF? vol.231, 2013, https://doi.org/10.1016/j.neuroscience.2012.11.054
  42. Antioxidants Prevent Memory Deficits Provoked by Chronic Variable Stress in Rats vol.36, pp.12, 2011, https://doi.org/10.1007/s11064-011-0563-6
  43. Isoflurane Induces Transient Anterograde Amnesia through Suppression of Brain-Derived Neurotrophic Factor in Hippocampus vol.53, pp.3, 2013, https://doi.org/10.3340/jkns.2013.53.3.139
  44. When Are New Hippocampal Neurons, Born in the Adult Brain, Integrated into the Network That Processes Spatial Information? vol.6, pp.3, 2011, https://doi.org/10.1371/journal.pone.0017689
  45. Estrogens are neuroprotective factors for hypertensive encephalopathy vol.146, 2015, https://doi.org/10.1016/j.jsbmb.2014.04.001
  46. Sex differences and estrogen regulation of BDNF gene expression, but not propeptide content, in the developing hippocampus vol.95, pp.1-2, 2017, https://doi.org/10.1002/jnr.23920
  47. Different patterns of morphological changes in the hippocampus and dentate gyrus accompany the differential expression of disability following nerve injury vol.225, pp.6, 2014, https://doi.org/10.1111/joa.12238
  48. Alcohol exposure induces depression-like behavior by decreasing hippocampal neuronal proliferation through inhibition of the BDNF-ERK pathway in gerbils vol.16, pp.3, 2012, https://doi.org/10.1080/19768354.2011.640352
  49. Are Herbal Compounds the Next Frontier for Alleviating Learning and Memory Impairments? An Integrative Look at Memory, Dementia and the Promising Therapeutics of Traditional Chinese Medicines vol.25, pp.8, 2011, https://doi.org/10.1002/ptr.3388
  50. Is there a correlation between hippocampus and amygdala volume and olfactory function in healthy subjects? vol.59, pp.2, 2012, https://doi.org/10.1016/j.neuroimage.2011.09.024
  51. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain vol.29, pp.4, 2013, https://doi.org/10.1016/j.nut.2012.11.007
  52. Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice vol.20, pp.Suppl 2, 2016, https://doi.org/10.5213/inj.1632738.369
  53. Sleep Deprivation During Early-Adult Development Results in Long-Lasting Learning Deficits in Adult Drosophila vol.34, pp.2, 2011, https://doi.org/10.1093/sleep/34.2.137
  54. Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice vol.5, pp.12, 2015, https://doi.org/10.1038/tp.2015.183
  55. MPTP-induced hippocampal effects on serotonin, dopamine, neurotrophins, adult neurogenesis and depression-like behavior are partially influenced by fluoxetine in adult mice vol.1457, 2012, https://doi.org/10.1016/j.brainres.2012.03.046
  56. Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: A double-blind, randomized, placebo-controlled trial vol.18, pp.4, 2015, https://doi.org/10.1179/1476830513Y.0000000105
  57. Gene therapy in Alzheimer’s disease - potential for disease modification vol.14, pp.4, 2010, https://doi.org/10.1111/j.1582-4934.2010.01038.x
  58. Evidence for the contribution of BDNF-TrkB signal strength in neurogenesis: An organotypic study vol.606, 2015, https://doi.org/10.1016/j.neulet.2015.08.032
  59. Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders vol.33, pp.10, 2011, https://doi.org/10.1111/j.1460-9568.2011.07676.x
  60. Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a Neurofibromatosis Clinical Trials Consortium phase II study vol.17, pp.4, 2015, https://doi.org/10.1093/neuonc/nou235
  61. N-Methyl-N-nitrosourea during late gestation results in concomitant but reversible progenitor cell reduction and delayed neurogenesis in the hippocampus of rats vol.226, pp.3, 2014, https://doi.org/10.1016/j.toxlet.2014.02.018
  62. Inhibition of PI3K-Akt Signaling Blocks Exercise-Mediated Enhancement of Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus vol.4, pp.11, 2009, https://doi.org/10.1371/journal.pone.0007901
  63. Physiological aspects of music and longevity vol.6, pp.2, 2016, https://doi.org/10.1134/S207905701602003X
  64. Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all? vol.5, pp.7, 2015, https://doi.org/10.1038/tp.2015.100
  65. Effects of treadmill exercise on hippocampal neurogenesis in an MPTP /probenecid-induced Parkinson’s disease mouse model vol.27, pp.10, 2015, https://doi.org/10.1589/jpts.27.3203
  66. Selective Oestrogen Receptor Agonists Rescued Hippocampus Parameters in Male Spontaneously Hypertensive Rats vol.28, pp.10, 2016, https://doi.org/10.1111/jne.12415
  67. Cynomorium songaricum extract enhances novel object recognition, cell proliferation and neuroblast differentiation in the mice via improving hippocampal environment vol.14, pp.1, 2014, https://doi.org/10.1186/1472-6882-14-5
  68. Oroxylin A Induces BDNF Expression on Cortical Neurons through Adenosine A2AReceptor Stimulation: A Possible Role in Neuroprotection vol.20, pp.1, 2012, https://doi.org/10.4062/biomolther.2012.20.1.027
  69. Influence of brain-derived neurotrophic factor and catecholO-methyl transferase polymorphisms on effects of meditation on plasma catecholamines and stress vol.15, pp.1, 2012, https://doi.org/10.3109/10253890.2011.592880
  70. Effects of Pentylenetetrazole Kindling on Mitogen-Activated Protein Kinases Levels in Neocortex and Hippocampus of Mice vol.39, pp.12, 2014, https://doi.org/10.1007/s11064-014-1453-5
  71. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: A new element in the neurotrophic hypothesis of antidepressant drug action vol.46, pp.1, 2012, https://doi.org/10.1016/j.npep.2011.05.005
  72. Applied Healthspan Engineering vol.13, pp.2-3, 2010, https://doi.org/10.1089/rej.2009.0969
  73. N-docosahexaenoylethanolamine is a potent neurogenic factor for neural stem cell differentiation vol.125, pp.6, 2013, https://doi.org/10.1111/jnc.12255
  74. Zinc: indications in brain disorders vol.29, pp.2, 2015, https://doi.org/10.1111/fcp.12110
  75. Short-term, moderate exercise is capable of inducing structural, bdnf-independent hippocampal plasticity vol.1425, 2011, https://doi.org/10.1016/j.brainres.2011.10.004
  76. Repeated systemic administration of the nutraceutical alpha-linolenic acid exerts neuroprotective efficacy, an antidepressant effect and improves cognitive performance when given after soman exposure vol.51, 2015, https://doi.org/10.1016/j.neuro.2015.09.006
  77. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory vol.71, pp.8, 2013, https://doi.org/10.1111/nure.12045
  78. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice 2017, https://doi.org/10.1139/cjpp-2016-0333
  79. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress vol.271, 2014, https://doi.org/10.1016/j.bbr.2014.05.068
  80. Aberrant hippocampal neurogenesis after limbic kindling: Relationship to BDNF and hippocampal-dependent memory vol.47, 2015, https://doi.org/10.1016/j.yebeh.2015.04.046
  81. The treatment of TBI with human marrow stromal cells impregnated into collagen scaffold: Functional outcome and gene expression profile vol.1371, 2011, https://doi.org/10.1016/j.brainres.2010.10.088
  82. Exercising the worry away: How inflammation, oxidative and nitrogen stress mediates the beneficial effect of physical activity on anxiety disorder symptoms and behaviours vol.37, pp.4, 2013, https://doi.org/10.1016/j.neubiorev.2013.02.003
  83. Trio gene is required for mouse learning ability vol.1608, 2015, https://doi.org/10.1016/j.brainres.2015.02.040
  84. Early ethanol exposure and vinpocetine treatment alter learning- and memory-related proteins in the rat hippocampus and prefrontal cortex vol.95, pp.5, 2017, https://doi.org/10.1002/jnr.23894
  85. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice vol.19, pp.7, 2012, https://doi.org/10.1038/gt.2011.126
  86. System Consolidation of Spatial Memories in Mice: Effects of Enriched Environment vol.2013, 2013, https://doi.org/10.1155/2013/956312
  87. Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils vol.12, pp.2, 2016, https://doi.org/10.12965/jer.1632586.293
  88. Voluntary Physical Exercise Induces Expression and Epigenetic Remodeling of VegfA in the Rat Hippocampus 2016, https://doi.org/10.1007/s12035-016-0344-y
  89. Spinosin, a C-glycoside flavonoid, enhances cognitive performance and adult hippocampal neurogenesis in mice vol.145, 2016, https://doi.org/10.1016/j.pbb.2016.03.007
  90. Mouse Brain PSA-NCAM Levels Are Altered by Graded-Controlled Cortical Impact Injury vol.2012, 2012, https://doi.org/10.1155/2012/378307
  91. Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by γ-ray radiation vol.168, pp.2, 2013, https://doi.org/10.1111/j.1476-5381.2012.02142.x
  92. Effects of experimental cerebral malaria in memory, brain-derived neurotrophic factor and acetylcholinesterase acitivity in the hippocampus of survivor mice vol.523, pp.2, 2012, https://doi.org/10.1016/j.neulet.2012.06.051
  93. Downregulation of Wnt/β-catenin signaling causes degeneration of hippocampal neurons in vivo vol.32, pp.12, 2011, https://doi.org/10.1016/j.neurobiolaging.2010.03.013
  94. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice vol.305, 2016, https://doi.org/10.1016/j.bbr.2016.02.036
  95. Role of vascular endothelial growth factor in adult hippocampal neurogenesis: Implications for the pathophysiology and treatment of depression vol.227, pp.2, 2012, https://doi.org/10.1016/j.bbr.2011.04.022
  96. Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway vol.174, pp.2, 2017, https://doi.org/10.1111/bph.13668
  97. The p66Shc gene paves the way for healthspan: Evolutionary and mechanistic perspectives vol.37, pp.5, 2013, https://doi.org/10.1016/j.neubiorev.2013.03.005
  98. Tetramethylpyrazine Produces Antidepressant-Like Effects in Mice Through Promotion of BDNF Signaling Pathway vol.18, pp.8, 2015, https://doi.org/10.1093/ijnp/pyv010
  99. Neurofibromin and Amyloid Precursor Protein Expression in Dopamine D3 Receptor Knock-Out Mice Brains vol.36, pp.3, 2011, https://doi.org/10.1007/s11064-010-0359-0
  100. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats 2017, https://doi.org/10.1111/adb.12547
  101. The adaptive and maladaptive continuum of stress responses – a hippocampal perspective vol.26, pp.4, 2015, https://doi.org/10.1515/revneuro-2014-0083
  102. Growth hormone (GH) treatment may cooperate with locally-produced GH in increasing the proliferative response of hippocampal progenitors to kainate-induced injury vol.25, pp.5, 2011, https://doi.org/10.3109/02699052.2011.559611
  103. Early functional brain development in autism and the promise of sleep fMRI vol.1380, 2011, https://doi.org/10.1016/j.brainres.2010.09.028
  104. Neuroregeneration in neurodegenerative disorders vol.11, pp.1, 2011, https://doi.org/10.1186/1471-2377-11-75
  105. Stimulated neuronal expression of brain-derived neurotrophic factor by Neurotropin vol.45, pp.3, 2010, https://doi.org/10.1016/j.mcn.2010.06.013
  106. Involvement of Brain-Derived Neurotrophic Factor and Neurogenesis in Oestradiol Neuroprotection of the Hippocampus of Hypertensive Rats vol.22, pp.10, 2010, https://doi.org/10.1111/j.1365-2826.2010.02058.x
  107. The Marine AlgaGelidium amansiiPromotes the Development and Complexity of Neuronal Cytoarchitecture vol.27, pp.1, 2013, https://doi.org/10.1002/ptr.4684
  108. A brown alga Sargassum fulvellum facilitates neuronal maturation and synaptogenesis vol.48, pp.8, 2012, https://doi.org/10.1007/s11626-012-9537-5
  109. Phase 2 randomized, flexible crossover, double-blinded, placebo-controlled trial of the farnesyltransferase inhibitor tipifarnib in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas vol.16, pp.5, 2014, https://doi.org/10.1093/neuonc/nou004
  110. Vascular endothelial growth factor inhibitors and cognitive impairment: evidence and controversies vol.13, pp.1, 2014, https://doi.org/10.1517/14740338.2013.828034
  111. Neurotrophins and acupuncture vol.157, pp.1-2, 2010, https://doi.org/10.1016/j.autneu.2010.03.020
  112. Are the neuroprotective effects of estradiol and physical exercise comparable during ageing in female rats? vol.13, pp.4, 2012, https://doi.org/10.1007/s10522-012-9386-3
  113. Resveratrol: A Potential Hippocampal Plasticity Enhancer vol.2016, 2016, https://doi.org/10.1155/2016/9651236
  114. How cigarette smoking may increase the risk of anxiety symptoms and anxiety disorders: a critical review of biological pathways vol.3, pp.3, 2013, https://doi.org/10.1002/brb3.137
  115. Electroconvulsive stimulation, but not chronic restraint stress, causes structural alterations in adult rat hippocampus-A stereological study vol.25, pp.1, 2015, https://doi.org/10.1002/hipo.22351
  116. Unexpected Benefits of Intermittent Hypoxia: Enhanced Respiratory and Nonrespiratory Motor Function vol.29, pp.1, 2014, https://doi.org/10.1152/physiol.00012.2013
  117. The regulation of pituitary-thyroid abnormalities by peripheral administration of levothyroxine increased brain-derived neurotrophic factor and reelin protein expression in an animal model of Alzheimer’s disease vol.96, pp.3, 2018, https://doi.org/10.1139/cjpp-2016-0434
  118. Effect of Exercise and Aβ Protein Infusion on Long-Term Memory-Related Signaling Molecules in Hippocampal Areas pp.1559-1182, 2019, https://doi.org/10.1007/s12035-018-1425-x
  119. Hippocampal PPARα is a novel therapeutic target for depression and mediates the antidepressant actions of fluoxetine in mice vol.175, pp.14, 2018, https://doi.org/10.1111/bph.14346
  120. Electroconvulsive treatment prevents chronic restraint stress-induced atrophy of the hippocampal formation-A stereological study vol.9, pp.2, 2019, https://doi.org/10.1002/brb3.1195