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New neurons are continually generated in the subgranular 
zone of the dentate gyrus and in the subventricular zone of the 
lateral ventricles of the adult brain. These neurons proliferate, 
differentiate, and become integrated into neuronal circuits, but 
how they are involved in brain function remains unknown. A 
deficit of adult hippocampal neurogenesis leads to defective 
spatial learning and memory, and the hippocampi in neuro-
psychiatric diseases show altered neurogenic patterns. Adult 
hippocampal neurogenesis is not only affected by external 
stimuli but also regulated by internal growth factors including 
BDNF, VEGF and IGF-1. These factors are implicated in a 
broad spectrum of pathophysiological changes in the human 
brain. Elucidation of the roles of such neurotropic factors 
should provide insight into how adult hippocampal neuro-
genesis is related to psychiatric disease and synaptic plasticity. 
[BMB reports 2009; 42(5): 239-244]

The generation of new neurons in the mammalian brain

Over the last decade, many fascinating studies have shown that 
new neurons are actively generated in two specific regions, the 
subventricular zone (SVZ) of the lateral ventricle and the sub-
granular zone (SGZ) of the dentate gyrus in the hippocampus of 
the mammalian brain (1, 2). But why neurogenesis is limited to 
these two specific regions in the brain is unknown. These find-
ings were obtained as a result of the development of molecular 
techniques using incorporation of nucleotide analogs (3, 4), vi-
ral infection (5), and genetic manipulation (6). Adult neural 
stem cells in the SVZ migrate through the rostral migratory 
stream (RMS) into the olfactory bulb where they differentiate 
into multiple types of interneurons releasing neurotransmitters 
to mitral or tufts cells (7). Proliferating cells in the SGZ of the 
dentate gyrus differentiate into immature neurons and are in-
corporated into the molecular layer, extending axons to the hi-

lus and CA3 regions following the mossy fiber pathway, and 
projecting dendrites towards the molecular layer to receive sig-
nals from the entorhinal cortex (7). These neurons express spe-
cific cell surface markers spatiotemporally depending on their 
maturity and microenvironment (8). The pluripotent neurons 
from the SVZ and SGZ seem to play different roles and to be 
regulated by distinct mechanisms (9). By investigating the fac-
tors modulating adult neurogenesis, neuronal activity, environ-
mental factors, and psychotropic drugs have been shown to dy-
namically regulate adult neurogenesis (10). Adult hippocampal 
neurogenesis is downregulated by stress (11), aging (12), gluco-
corticoid hormones (12, 13) and drugs of abuse (14), whereas it 
is upregulated by an enriched environment (3), exercise (15), 
hippocampal-dependent learning (16), estrogens (17), anti-
depressant drugs (18, 19), electroconvulsive seizure (ECS) (20), 
lithium (21), and etc (Fig. 1). 
    Data regarding the functional significance of adult hippo-
campal neurogenesis are still conflicting. This may be because 
the various experiments use different strains, ages of animals, 
parameters in behavioral tests, and environments. Three as-
pects of adult hippocampal neurogenesis have been in-
tensively investigated: one is the mechanism of adult neuro-
genesis, i.e. how new-born neurons proliferate, differentiate, 

Mini Review



Adult hippocampal neurogenesis and related neurotrophic factors
Eugene Lee and Hyeon Son

240 BMB reports http://bmbreports.org

and become integrated into neuronal circuits. Another is hip-
pocampal function related to learning and memory: are new 
neurons required for learning and memory, or do learning and 
memory increase adult hippocampal neurogenesis? The last as-
pect concerns the pathophysiological etiology of psychiatric 
diseases such as depression and bipolar disorder. The mecha-
nism of adult hippocampal neurogenesis per se is being ac-
tively investigated by the groups of Gage and Song using elec-
trophysiological approaches and genetic manipulation. Here, 
we will briefly review adult hippocampal neurogenesis in rela-
tion to hippocampal function, learning and memory and the 
modulation of emotion, by considering the neurotropic factors 
that affect adult hippocampal neurogenesis.
    The hippocampus is differentiated along its length, the dor-
sal part being involved in learning and memory and the ven-
tral part being associated with emotionality (22). This topo-
logical difference is linked to different functions: The ventral 
hippocampus receives inputs from the rostromedial entorhinal 
cortex, and provides output projections to the prefrontal cor-
tex, amygdale, and nucleus accumbens. On the other hand, 
the dorsal hippocampus receives input signals from the lateral 
and caudomedial entorhinal cortex, and has efferents to the 
dorsal lateral septum and mammillary complex. The two re-
gions also display distinct patterns of gene expression, support-
ing the differential functional involvement of the hippocampus 
along its axis (23).

Adult hippocampal neurogenesis and learning and 
memory

As adult hippocampal neurogenesis was found to occur con-
tinuously throughout life, investigators tried to discover the 
function of the newly generated brain neurons. It has been 
speculated that newborn cells are required for normal hippo-
campal function, as suggested by postmortem analysis showing 
reduced hippocampal volume in patients suffering from 
stress-related illnesses and depression (24-27). The effect of an-
tidepressant drugs seemed to be blocked by X-ray irradiation 
that destroyed new-born cells, suggesting that hippocampal 
neurogenesis mediates the behavioral effects of antidepressant 
drugs (28). The link between hippocampal neurogenesis and 
mood disorders also suggested that dysfunction of adult neuro-
genesis might be the cause of psychiatric illness. This idea is, 
however, disputed by a series of studies using genetic ap-
proaches to specifically target newborn neurons; these demon-
strated that adult hippocampal neurogenesis is unlikely to be 
directly linked to depression but rather to anxiety-related be-
havior (29). Environmental enrichment does not require hippo-
campal neurogenesis for its behavioral effect (30). Interestingly, 
chronic mild stress specifically reduced cell proliferation in the 
ventral hippocampus, thus connecting hippocampal neuro-
genesis with the regulatory effect of the ventral hippocampus 
on emotion (31). Though it does not appear to underlie the eti-
ology of emotional disorder, adult hippocampal neurogenesis 

is likely to be associated with the regulation of emotion. Does 
this then mean that an increase in newborn neurons in re-
sponse to therapeutic drugs or a decrease in their number are 
only secondary consequences of the treatment or environ-
mental influences? Or do the newborn neurons contribute to 
the beneficial effect of drugs and to compensating for detri-
mental effects? Further work to define the mechanism by which 
antidepressant drugs affect mental disorders should answer this 
question.
    As the hippocampus is the core center for learning and 
memory, it has been hypothesized that adult hippocampal neu-
rogenesis might participate in hippocampal function related to 
learning and memory (32). However, the limited evidence and 
inconsistent results obtained limit our understanding of the link 
between adult hippocampal neurogenesis and learning and 
memory. Spatial learning behavior is better in mice strains hav-
ing more new neurons (33) and reduced production of new 
neurons due to adverse experience at an early stage is asso-
ciated with poor learning ability (34, 35), but rats do not have 
differential strain-dependent learning abilities dependent on 
adult neurogenesis (36). Even negative regulators of hippo-
campal neurogenesis sometimes result in enhanced learning 
(37) and exercise improves learning and memory in aged mice 
(38), suggesting that the connection between adult hippo-
campal neurogenesis and hippocampus-dependent learning 
may not be straightforward. These relationships were studied 
by ablating newborn cells using the antimitotic agent methyl-
azomethanlol acetate (MAM) and irradiation (16, 39). However 
a recent study found that specific knock-down of adult neuro-
genesis impaired spatial and recognition memory in the hippo-
campus (40). Further work is needed to see if numbers of new 
neurons are increased by learning or whether new neurons are 
required for learning and memory (32).

Neurotrophic factors affecting adult hippocampal 
neurogenesis and psychiatric disorders

Despite the conflicting evidence about the connection be-
tween adult hippocampal neurogenesis and emotional impair-
ment, as well as learning and memory, it is certain that several 
growth factors are involved in the mechanisms regulating adult 
hippocampal neurogenesis. The involvement of growth factors 
in the mechanism underlying the effect of antidepressant drugs 
on hippocampal neurogenesis and antidepressive disorders 
has been much investigated. Adult hippocampal neurogenesis 
is positively affected by chronic antidepressant treatment (18), 
and neurotrophic factors such as BDNF, NGF, and neuro-
trophin-3 are known to be implicated in adult neurogenesis 
and neuroplasticity. Among these, BDNF has been intensively 
studied and shown to be involved in learning and memory, 
and synaptic plasticity (41). Spatial learning and memory is de-
fective in a BNDF-deficient animal model (42), and over-
expression of BDNF causes both anxiogenic and anti-
depressant behavior (43). BDNF is implicated in the patho-
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genesis of depression and the therapeutic mechanism of anti-
depressants (44, 45). Moreover antidepressant drugs including 
selective serotonin reuptake inhibitors (SSRI), selective nor-
epinephrine reuptake inhibitors (SNI), and monoamine oxi-
dase inhibitors (MAOI), enhance BDNF expression in the hip-
pocampus (46) and BDNF is downregulated by stress in the 
hippocampus (47). However, inhibition of BDNF signaling 
doesn’t block the antidepressant-induced neurogenesis (48). 
Rather, BDNF is likely to be required for a long term survival 
of newborn hippocampal neurons (48). A polymorphism at 
66th amino acid of BDNF coding region is associated with de-
pression as well as other disorders including anxiety and ob-
sessive-compulsive disorder (49). Interestingly, BDNF is epi-
genetically modified by traumatic stress and drug treatment. 
BDNF gene transcription is suppressed by DNA methylation, 
and this is reversed by histone acethylase which is restored by 
antidepressant drugs (50). NT3 deficiency caused defects both 
in differentiation of neuronal precursor cells and in spatial 
learning tasks (51), while NT3 increased the expression of 
BDNF (52) and modulated BDNF-induced signaling in differ-
entiating hippocampal neurons (53). Also, NT3 was down-
regulated with NGF by exposure to chronic stress (54).
    Insulin-like growth factor-1 (IGF-1), which is primarily pro-
duced in the liver and stimulated by growth hormone, plays an 
important role in cell growth and development. It upregulates 
neurogenesis in the adult hippocampus (55). It also increases 
spontaneous firing, increases sensitivity to afferent stimulation, 
and promotes the generation of newborn cells, all effects on 
the brain similar to those of exercise, implying that IGF-1 me-
diates the effect of exercise (56, 57). In addition, expression of 
IGF-1 is increased by chronic treatment with antidepressant 
drugs (58) and injection of IGF-1 elicits the same anti-
depressant behavior as BDNF, suggesting a role in mediating 
the effects of antidepressant drugs (59).
    Vascular endothelial growth factor (VEGF) is a well known 
growth factor and an important signaling molecule involved in 
vasculogenesis and angiogenesis (60, 61). It stimulates the pro-
duction of newborn neurons in vitro and in vivo (62), and a 
dominant-negative form of VEGF receptor 2 (flk-1) blocked cell 
proliferation (63). Proliferating cells are closely associated with 
the vasculature, which indicates that factors released from 
blood vessels may have a direct impact on adult neural pro-
genitors and that the microenvironment may control the local 
remodeling of given brain regions (64). Chronic antidepressant 
drugs induce increased VEGF expression in the hippocampus 
(65) and VEGF is required for cell proliferation in response to 
antidepressant drugs (66). VEGF has been identified as one of 
products upregulated by electroconvulsive seizure, a treatment 
for depression (65, 67). In addition, exogenous VEGF treat-
ment promotes neurite outgrowth through flk-1, which signals 
via the MAPK pathway (68). Interestingly, VEGF is required for 
increased neurogenesis in adult mice exposed to an enriched 
environment and to exercise (63, 69), which are reported to 
stimulate adult hippocampal neurogenesis and have an anti-

depressive effect. Chronic stress, which caused reduced hippo-
campal neurogenesis, significantly decreased the expression of 
VEGF and flk-1 in the granular cell layer (70). Taken together, 
these findings suggest that VEGF plays an important role in the 
complex pathways by which diverse environmental stimuli af-
fect behavioral outcomes, and may be a strong candidate as a 
therapeutic target in depression (71).
    Erythropoietin (EPO) is a cytokine well known to play a role 
in inducing erythropoiesis under hypoxic conditions. It also in-
creases adult hippocampal neurogenesis (72, 73). The brains 
of EPO receptor (EPOR) knockout mice show enhanced apop-
tosis and the mice are highly sensitive to hypoxia (74), but it is 
not known if this sensitivity is because EPO has a neuro-
protective effect or is a secondary effect of decreased oxygen 
delivery to the brain. A recent study demonstrates that EPO 
treatment improves hippocampal-dependent memory by mod-
ulating neuronal plasticity and synaptic connectivity, suggest-
ing EPO to be a potential neuropsychiatric drug (75). Image 
analysis in clinical research has shown that EPO rapidly im-
proves mood and modulates cognitive neural processing, as 
do serotonergic antidepressant drugs (59). Also, EPO ex-
pression is enhanced by electroconvulsive seizure, and EPO 
induces antidepressant-like behavior (76). BDNF is reported to 
be increased by treatment with EPO (77) and expression of 
other molecules implicated in antidepressant action is also in-
creased (76). EOP also prevented the development of global 
brain atrophy in a mouse model of chronic neurodegeneration 
(78, 79), and promotes neurite outgrowth and axonal re-
generation (80). Interestingly, EPOR expression is increased in 
schizophrenia and Alzheimer’s disease (81).

Closing remarks

There have been many studies of the possible link between the 
production of new neurons in the adult hippocampus and hip-
pocampal functions such as learning and memory and emo-
tional modulation, though a huge area remains to be explored. 
Adult hippocampal neurogenesis is an intriguing field because 
it is immediately altered by subtle changes in the levels of neu-
ronal growth hormones and factors, suggesting that it could be 
a good indicator of the internal condition of the brain. This, in 
turn, implies that adult hippocampal neurogenesis may be use-
ful for investigating therapeutic drugs to correct or improve 
brain function. It is not yet completely understood how the 
production and maturation of newborn neurons are modu-
lated, and how they interact with mature neurons in a circuit. 
However, given that the generation of new neurons is affected 
by modulators secreted by mature neurons, we should not ig-
nore the question of how mature neurons are affected by envi-
ronmental factors and internal growth factors and eventually 
modify the pattern of adult hippocampal neurogenesis. To bet-
ter understand the relationship between adult hippocampal 
neurogenesis and mature neurons we also need to see how 
mature neurons respond to trophic factors that are affected by 
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synaptic plasticity, external factors, and synaptic connections. 
Study of the role of neurotrophic factors in adult hippocampal 
neurogenesis may provide insight into the modulation of brain 
function associated with psychiatric disorders including 
schizophrenia.
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