• Title/Summary/Keyword: Symmetric lifting

Search Result 20, Processing Time 0.02 seconds

The Cumulative Trunk Muscle Fatigue Depending on The Length of Recovery Time (작업 중 여유시간 변화에 따른 몸통 근육 누적 피로도)

  • Shin, Hyun-Joo;Kim, Jung-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.44-51
    • /
    • 2007
  • The purpose of this study was to identify the relationship between the cumulative fatigue of trunk muscles andthe period of recovery time during repetitive lifting and lowering tasks with symmetric and asymmetric postures.Ten subjects participated in the experiment. Subjects had 1, 2, 3, 4 and 5 minutes recovery time respectivelywhile they were performing the lifting and lowering task repeatedly for 3 minutes with the weight equivalent to25% level of MVC. EMG signals from ten trunk muscles were collected and the fatigue level was analyzedquantitatively. In results, the local muscle fatigue was no longer accumulated when 5 minutes recovery time wasgiven in symmetric position. For asymmetric position, it took longer minutes to prevent the fatigue accumul-ation. Different trunk muscles indicated slightly different recovery patterns in terms of MPF (Mean Powerfrequency) value.This result would help ergonomist design the length of recovery time to control the cumulative fatigue of trunkmuscles in industry with repetitive lifting and lowering task.

The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.4 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Background: To determine the influence of lifting speed and type on peak and cumulative back compressive force (BCF) and shoulder moment (SM) loads during symmetric lifting. Another aim of the study was to compare static and dynamic lifting models. Methods: Ten male participants performed a floor-to-shoulder, floor-to-waist, and waist-to-shoulder lift at three different speeds [slow (0.34 m/s), medium (0.44 m/s), and fast (0.64 m/s)], and with two different loads [light (2.25 kg) and heavy (9 kg)]. Two-dimensional kinematics and kinetics were determined. A three-way repeated measures analysis of variance was used to calculate peak and cumulative loading of BCF and SM for light and heavy loads. Results: Peak BCF was significantly different between slow and fast lifting speeds (p < 0.001), with a mean difference of 20% between fast and slow lifts. The cumulative loading of BCF and SM was significantly different between fast and slow lifting speeds (p < 0.001), with mean differences ${\geq}80%$. Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

A study on applying the direct estimation method to determining maximum acceptable weight in symmetric lifting task (직접추정법의 대칭적인 들기 작업의 최대허용하중 결정에의 적용에 관한 연구)

  • 이관석;박희석
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • In this paper, the effectiveness and accuracy of using the direct estimation method were investigated in determining a worker's lifting capacity or the maximum acceptable weight of lifting (MAWOL) of symmetrical fifting tasks in the workplace were investigated. Six lifting tasks involving two vertical fifting start-end points (0-80cm, 47-102cm) and three lifting frequencies (1, 2, and 4 lifts/minute) were studied. Ten young, male subjects performed the six lifting tasks to predict the MAWOL using the psychophysical method and the direct estimation method. The main results indicated that there were no significant differences between the MAWOLs determined by the two methods except for the lifting frequency of 4 lifts/minute. Analysis of variance was performed on the task rating data to check the consistency of the task rating across subjects, which revealed no significant difference.

  • PDF

Psychophysical and Physiological Study on Various Lifting Tasks (여러 가지 들기 작업에서의 인체심리학적 · 생리학적 연구)

  • Yun, Hun-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.11-22
    • /
    • 2006
  • The muscular-skeletal disorders(MSDs) that have become a major issue recently in Korean industrial safety area are mainly caused by manual material handling task. The objective of this study is to provide scientific data for the establishment of work safety standard for Korean workers through the experiments of lifting task under various conditions, in order to prevent the muscular-skeletal disorders in the industrial work site. Eight male college students were recruited as participants. Three different lifting frequencies(1, 3, 5 lifts/min) and three twisting angles(including the sagittal plane and two asymmetric angles; i.e., 0°, 45°, 90°) for symmetric and asymmetric tasks, respectively, with three lifting range from floor to knuckle height, knuckle to shoulder, floor to shoulder height for one hour's work shift using free style lifting technique were studied. The maximum acceptable weight of load(MAWL) was determined under the different task conditions, and the oxygen consumption, heart rate, and RPE were measured or recorded while subjects were lifting their MAWLs. The results showed that: (1) The MAWLs were significantly decreased as the task frequency and task angle increased.; (2) The heart rate, oxygen consumption, RPE significantly increased with an increase in lifting frequency although maximum acceptable weight of lift decreased.; (3) The highest heart rate and oxygen consumption was recorded at the lifting range of floor to shoulder, followed by floor to knuckle and knuckle to shoulder.; (4) The RPE value showed that subjects perceived more exertion at the high frequency rate of lifting task and lifting range of floor to shoulder height. (5) The modeling for MAWL using isometric strength, task angle and lifting frequency were developed. It is expected that use of the results provided in this study may prove helpful in reducing MMH hazards, especially from lifting tasks for Korean, and can be used as a basis for pre-employment screening.

Wavelet Transform with Point-Symmetric Extension. (점대칭 확장을 이용한 웨이블릿 변환)

  • 최성훈;정원용
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.86-89
    • /
    • 2003
  • 타일링을 통해 손실 압축된 데이터에 대해 점대칭 확장(point symmetric extension)을 사용하면 경계에서의 인공물(artifact)들을 줄일 수 있다 실제 확장 샘플 없이 경계 필터(boundary filter)를 사용하는 것과 같은 효과를 내는 방법을 리프팅(lifting)을 사용하여 수행할 수 있다. 본 논문에서 사용된 필터는 PR 특성을 준수하고, 경계근처에서 어떠한 후처리 기술이나 이웃하는 타일들로부터의 추가정보 없이 경계 인공물들을 현저히 감소시켰다.

  • PDF

The Relationship between Grip Strength and Ground Reaction Force by Change of Position when Lifting Tasks (들기 작업할 때 자세의 변화에 따른 악력과 지면 반발력의 상관관계)

  • Jung, Sang-Yong;Gang, Jin-Woo;Koo, Jung-Wan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.41-47
    • /
    • 2009
  • The purpose of this study, during the lifting task was researching the difference and a relationship between the ground reaction force and the grip strength by change of position. After grip strength has measured in symmetry position and asymmetry position at 45cm and 75cm of height of hand, ground reaction force was measured by same attitude lifting wooden box. We analyzed the difference of grip strength and ground reaction force in each position change. The results of grip strength, the grip strength of both hand were significant difference that in study subject symmetry and asymmetry position (p<0.01). The results of symmetry lifting task, the study subjects was significant difference of the ground reaction force difference by height (p<0.05). Asymmetry lifting task was significant difference of ground reaction force difference by direction of rotation was changed (p<0.01). The result of it will rotate with non-dominant hand side of lifting tasks from height 75cm where it easily maintains a balance possibility and decreasing the load of the hand. Therefore, from the workshop in the work people, it will be between the height 75cm and non-dominant hand side of trunk rotatory direction in the lifting tasks. Future study is necessary researched about the change of grip strength when the height of the hand is higher, and the difference of the ground reaction force when the change of weight.

A Study on the Fast Computational Algorithm for the Discrete Cosine Transform(DCT) via Lifting Scheme (리프팅 구조를 경유한 고속의 DCT 계산 알고리즘에 관한 연구)

  • Inn-Ho Jee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.75-80
    • /
    • 2023
  • We show the design of fast invertible block transforms that can replace the DCT in future wireless and portable computing application. This is called binDCT. In binDCT, both the forward and the inverse transforms can be implemented using only binary shift and addition operation. And the binDCT inherits all desirable DCT characteristics such as high coding gain, no DC leakage, symmetric basis functions, and recursive construction. The binDCT also inherits all lifting properties such as fast implementations, invertible integer-to-integer mapping, in-place computation. Thus, this method has advantage of fast implementation for complex DCT calculations. In this paper, we present computation costs and performance analysis between DCT and binDCT using Shapiro's EZW.

Comparison of Peak EMG Amplitude on Low Back Muscles according to Asymmetric Load Center of Gravity and Trunk Lateral Bending while Lifting (들기 작업시 중량물의 비대칭 무게중심 및 상체 옆으로 기울임에 따른 허리근육의 Peak EMG 진폭 비교)

  • Han, Seung Jo;Kim, Sun-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4629-4635
    • /
    • 2012
  • This study was aimed at the relationship between peak EMG amplitude on low back muscles acting on L5/S1 and load center of gravity, trunk lateral bending while lifting an object. Musculoskeletal disorders including low back pain can occur even when handling heavy objects only once as well as when doing non-heavy materials repeatedly. 11 male subjects with average 23 age were required to lift a 15.8kg object symmetrically three times. Peak EMG amplitudes on 6 muscles related with L5/S1 were recorded and analyzed. The lifting conditions consisted of lifting symmetric load with no trunk lateral bending, asymmetric load with no trunk lateral bending, and asymmetric load with trunk lateral bending to the load center of gravity within an object. The results showed that peak EMG amplitude on back muscles contralateral to load center of gravity was observed greater in comparison with the symmetric load. Also, in case of lifting asymmetric load the posture with trunk lateral bending increased peak EMG amplitude on muscles contralateral to load center of gravity more than with no trunk lateral bending. This research can be used as one administrative intervention in order to reduce the low back pain incidence with suggesting workers that they keep the trunk not bending to load center of gravity if possible when lifting a heavy asymmetric object.

Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • Objectives: To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Methods: Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) backcompressive force. Results: Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R2 values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p < 0.05) for the dynamic peak prediction equations. The slope of the regression line for static prediction was significantly greater than one with a significant positive intercept value. Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

Effects of Load Center of Gravity and Feet Positions on Peak EMG Amplitude at Low Back Muscles While Lifting Heavy Materials (중량물 들기 작업시 물체 무게중심 및 발의 위치가 허리 근육의 최대 EMG 진폭에 미치는 영향)

  • Kim, Sun-Uk;Han, Seung Jo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Objectives: This study's aims were to evaluate the effects of load center of gravity within an object lifted and feet placements on peak EMG amplitude acting on bilateral low back muscle groups, and to suggest adequate foot strategies with an aim to reducing low back pain incidence while lifting asymmetric load. Methods: The hypotheses that asymmetric load imposes more peak EMG amplitude on low back muscles contralateral to load center of gravity than symmetric load and maximum peak EMG amplitude out of bilateral ones can be relieved by locating one foot close to load center of gravity in front of the other were established based on biomechanics including safety margin model and previous researches. 11 male subjects were required to lift symmetrically a 15.8kg object during 2sec according to each conditions; symmetric load-parallel feet (SP), asymmetric load-parallel feet (AP), asymmetric load-one foot contralateral to load center of gravity in front of the other (AL), and asymmetric load-one foot ipsilateral to load center of gravity in front of the other (AR). Bilateral longissimus, iliocostalis, and multifidus on right and left low back area were selected as target muscles, and asymmetric load had load center of gravity 10cm deviated to the right from the center in the frontal plane. Results: Greater peak EMG amplitude in left muscle group than in right one was observed due to the effect of load center of gravity, and mean peak EMG amplitudes on both sides was not affected by load center of gravity because of EMG balancing effect. However, the difference of peak EMG amplitudes between both sides was significantly affected by it. Maximum peak EMG amplitude out of both sides and the difference of peak EMG amplitude between both sides could be reduced with keeping one foot ipsilateral to load center of gravity in front of the other while lifting asymmetric load. Conclusions: It was likely that asymmetric load lead to the elevated incidence of low back pain in comparison with symmetric load based on maximum peak EMG amplitude occurrence and greater imbalanced peak EMG amplitude between both sides. Changing feet positions according to the location of load center of gravity was suggested as one intervention able to reduce the low back pain incidence.