• Title/Summary/Keyword: Symmetric flame

Search Result 17, Processing Time 0.02 seconds

A Study on the Structure of Axial-Symmetric Two-Phase Spray and Flame (축대칭 이류체 분무화염의 구조에 관한 연구)

  • Jung, Bo-Yoon;Ko, Dae-Kwon;Ahn, Soo-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 1988
  • Boilers and diesel engines have many problems because their exhaust particles, i.e., soot have lots of bad influence on environment. And it's spray and flame have fundamentally axial symmetric shape. To investigate the relationship between fuel concentration distribution of spray and soot concentration distribution as well as temperature distribution of flame, we made a axial symmetric two phase spray-flame and analyzed the structure of is. The measuring method is the principle of the light extinction method for the spray-flame and onion peeling model is applied to analyze the radial distribution of fuel and soot concentration. The temperature of flame is measured by ø 0.4mm Pt-Pt.RH 3% thermocouple. The oils for the experiments are diesel oil and 10% water emulsified diesel oil. It was found that the soot concentration becomes higher as it comes near to the center of flame, and the fuel concentration does, too. And the soot concentration level of diesel oil is generally higher than that of the 10% water emulsified fuel. The maximum flame temperature of diesel oil is 1,17$0^{\circ}C$, however, 10% water emulsified diesel oil is 1,27$0^{\circ}C$.

  • PDF

A Study on Application and Validation of the Coherent Flamelet Model in Counterflow Turbulent Premixed Combustion (대향류 예혼합 난류 연소 유동에서의 Coherent Flamelet Model 적용 및 검증에 관한 연구)

  • Choi, C.R.;Huh, K.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.51-58
    • /
    • 1996
  • The coherent flamelet model(CFM) is applied to symmetric counterflow turbulent premixed flames. The flame source term is set proportional to the turbulence intensity to reproduce the experimental correlation of Abdel-Gayed et al. for the turbulent burning velocity. Flame quenching by the turbulent rate of strain is modeled by an additional multiplication factor to the flame source term. A modified form of CFM is employed to consider coexistence of burned and unburned premixture with ambient air. The predicted flame position and turbulent flow field coincide well with the experimental data of Kostiuk et al., although there is some discrepancy in the radial rms velocity component and integral length scale near the symmetric plane.

  • PDF

Chemical Interaction in Downstream Flows of SNG/Air Symmetric Premixed Counterflow Flame (SNG/Air 예혼합 대향류 대칭화염의 후류 유동장에서 화학적 상호작용)

  • KANG, YEONSE;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.668-679
    • /
    • 2018
  • Experimental and numerical data were compared through a counterflow burner for the characteristic of basic flame about SNG- C11. In order to use the numerical mechanism accurately, the validation was carried out at strain rate ($a_g=30$, $120s^{-1}$) and the UCSD model showed satisfactory results. The effective Lewis number of the extinction boundary, and the behavior of extinction for the symmetric flames of the SNG-C11, could be explained through the trend of $Le_V$, and the flame of the extinction condition was inspected by the major species, key radicals and the chemical reaction paths. The interactions phenomenon in the merged flames has chemical reaction path for producing $HO_2$ were generated at stagnation point. It can be expected the one of major factors in interaction phenomenon.

Basic Study on Diffusion Branch of Tribrachial Flame with the Variation of Flammability Limits and Heat Loss Under Small Fuel Concentration Gradient (미소 농도구배 조건에서 열손실 및 가연한계가 삼지화염의 확산화염에 미치는 영향에 대한 기초 연구)

  • Cho, Sang-Moon;Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.505-513
    • /
    • 2010
  • The tribrachial flame has attracted interest as a basic structure of the flame edge. This flame structure helps understand stabilization of laminar flames and re-ignition of turbulent flames. A number of analytical and experimental studies have been carried out on the tribrachial flame. However, the effect of the variation of the flammability limits on the structure of the tribrachial flame has not been studied in detail. In this study, the effect of non-symmetric flammability limits on the flame structure was investigated by adopting a simple numerical scheme based on several laminar flame theories. A fixed velocity field was considered and boundary matching algorithm was used on the premixed branch. The variation of the diffusion branches under the non-symmetric flammability limits and heat loss was investigated. The formation and extinction of the diffusion branch behind the premixed branch were successfully described. This basic study can help understand the fundamental structure of the flame and can form the basis of subsequent detailed studies.

Numerical Study on the NH3/CH4 Symmetric Premixed Counterflow Flames - Part I Characteristics of Extinction Behavior (암모니아/메탄 예혼합 대향류 대칭화염에 관한 수치해석적 연구 - Part I 소화거동의 특성)

  • EUNSEO JIN;KEEMAN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.47-58
    • /
    • 2023
  • Experimental data conducted by Colson et al. and numerical data conducted in this study were compared through counterflow flames to understand of the characteristic of basic flame about mixture of ammonia/methane. In order to use the suitable numerical mechanism, the validation was performed using total four mechanisms and the Okafor's mechanism showed satisfactory experimental results. The extinction boundary of the stability map could be explained through the effective Lewis number and the trend of LeD. The extinction behavior of the flame was different under the lean and rich symmetric conditions and it was investigated by the major variables, global strain rate (ag) and mole fraction of ammonia (ΩNH3).

Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet (초기 직경이 n-heptane 액적 연소 특성에 미치는 영향)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

A Numerical Study on the Extinction of Methane/Air Counterflow Premixed Flames (대향류 메탄/공기 예혼합화염의 소염특성에 관한 수치해석적 연구)

  • 정대헌;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1982-1988
    • /
    • 1995
  • Methane/Air premixed flames are studied numerically, using a detailed chemical model, to investigate the flame strech effects on the extinction in a counterflow. The finite difference method, time integration and modified Newton iteration are used, and adaptive grid technique and grid smoothing have been employed to adjust the grid system according to the spatial steepness of the solution profiles. Results show that the flame stretch, or the conventional nondimensionalized stretch having the tangential flow characteristics of the stretched flame alone cannot adequately describes the extinction phenomena. On the other hand, the local flame stretch having both the normal and tangential flow characteristics of the stretched flame can give a proper explanation to the extinction of the symmetric planar premixed flames stabilized in a counter flow. The extinction condition were found to be a constant local stretch regardless of the equivalence ratio.

Numerical Study on the NH3/CH4 Symmetric Premixed Counterflow Flames Part II: Investigation of Flame Structure and Reaction Path (암모니아/메탄 예혼합 대향류 대칭 화염에 관한 수치 해석적 연구: Part II 화염의 구조 및 반응 경로 해석 )

  • JINSEONG KIM;KEEMAN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.748-757
    • /
    • 2023
  • Numerical analysis was conducted to confirm the characteristics of extinction behavior in NH3/CH4 counterflow symmetrical flames. Numerical simulations were run on CHEMKIN-PRO, using the OPPDIF code, with Okafor's mechanisms, which had the lowest error rate compared to Colson's experimental data in the our previous part I study. The chemical interactions of merged flames were examined by analyzing the production rate of major chemical species and key radicals with the volume fractional percentage of ammonia and global strain rate. The interaction phenomenon of the flames could be identified by observing the main chemical reaction path of the merged flames at the stagnation plane.

Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames (상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구)

  • Oh, Sanghoon;Park, Jeong;Kwon, Ohboong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.

A Study on Flame Extinction Behavior in Downstream Interaction between SNG/Air Premixed Flames (SNG/Air 예혼합 화염들의 하류상호작용에 있어서 화염 소화 거동에 관한 연구)

  • Sim, Keunseon;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.48-60
    • /
    • 2016
  • Experimental and numerical studies were conducted to investigate flame behaviors near flammable limits for downstream-interacting SNG-air premixed flames in a counter-flow configuration. The SNG fuel consisted of a methane, a propane, and a hydrogen with volumetric ratios of 91, 6, and 3%, respectively. The most appropriate priority for some reliable reaction mechanisms examined was given to the mechanism of UC San diego via comparison of lean extinction limits attained numerically with experimental ones. Flame stability map was presented with a functional dependencies of lower and upper methane concentrations in terms of global strain rate. The results show that, at the global strain rate of $30s^{-1}$, lean extinction boundary is slanted while rich extinction one is relatively less inclined because of the dependency of such extinction boundary shapes on deficient reactant Lewis number governed by methane mainly. Further increase of global strain rate forces both extinction boundaries to be more slanted and to be shrunk, resulting in an island of extinction boundary and subsequently one flame extinction limit. Extinction mechanisms for lean and rich, symmetric and asymmetric extinction boundary were identified and discussed via heat losses and chemical interaction.