• 제목/요약/키워드: Symmetric cross-ply

검색결과 39건 처리시간 0.023초

자기장 및 열하중을 받는 복합재료 원통셸의 진동 및 안정성해석 (Vibration and Stability of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields)

  • 박상윤;강성환;서정석;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.797-805
    • /
    • 2013
  • In this paper vibration and stability analysis of laminated composite shells based on the first order shear deformation theory(FSDT) for two different boundary conditions(clamped-clamped, simply supported) are performed. Structural model of cross-ply symmetric laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations)and thermal equations which are involved in constitutive equations. Extended Galerkin method is adopted to obtain the discretized equations of motion. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, laminate thickness-ratio and radius ratio for two boundary conditions are investigated and pertinent conclusions are derived.

광섬유 센서를 이용한 복합재료 적층판의 성형 모니터링 (Cure Monitoring of Composite Laminates Using Fiber Optic Sensors)

  • 강현규;강동훈;박형준;홍창선;김천곤
    • 한국항공우주학회지
    • /
    • 제30권2호
    • /
    • pp.59-66
    • /
    • 2002
  • 광섬유 브래그 격자/외부 패브리-페로 간섭 (FBG/EFPI) 복합 센서를 이용하여 여러 가지 복합재료 적층판의 성형과정 동안 발생하는 변형률과 온도를 동시에 모니터링하였다. 일방향 적층판, 대칭 직교 적층판, 그리고 평직 적층판에 대하여 각각 두개씩의 FBG/EFPI 센서를 방향과 위치를 달리하여 삽입하고 오토클레이브 내에서의 성형 동안 복합재료 적층판 내부의 두 지점에서의 성형변형률과 온도를 실시간으로 측정하였다. 이러한 실험들을 통해 FBG/EFPI 센서는 보합재료 구조물 성형시의 스마트 모니터링에 효율적임을 알 수 있었다.

혼합적층판에 대한 비선형 진동해석 (Analysis of Nonlinear Vibration for Hybrid Composite Plates)

  • 이영신;김영완
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2306-2314
    • /
    • 1992
  • 본 연구에서는 Lagrangian 방정식을 이용해 알루미늄, CFRP, GFRP, BFRP 등으 로 혼합적층된 cross-ply 사각판에 대해 굽힘-신장연성을 고려하여 Runge-Kutta Gill 법을 적용하여 수치적으로 비선형진동해석을 수행하였다.그리고 여러가지 적층방법 에 따라 비선형 진동에 어떠한 영향이 미치는가를 검토하였으며, 형상비(a/b), 모우드 의 변화 그리고 탄성계수비에 따른 비선형진동 거동을 규명하였다. 한편, 기본진동 수에 대해서는 상용 유한요소프로그램인 ABAQUS의 결과와 비교하였으며, 단일 적층된 판의 비선형진동거동에 대해서는 Singh의 결과와 비교 검토하였다.

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

복합재료 구조 요소의 탄성문제에 대한 해 (Solution to Elasticity Problems of Structural Elements of Composite Materials)

  • 알리 압사;허그;아메드 미르자;송정일
    • Composites Research
    • /
    • 제23권3호
    • /
    • pp.19-30
    • /
    • 2010
  • 본 연구는 일반적인 적층 복합재료의 구조요소에서 탄성영역에 대한 해석적 해에 대한 방법을 나타낸 것이다. 혼합된 경계조건 하에서 2차원 평면응력탄성문제는 변위포텐셜함수라 불리는 단일미지함수로 표현된 1/4 부분미분방정식의 해로 축소시켰으며, 응력과 변위의 모든 성분은 어떠한 경계조건에도 적합한 방법을 만드는 동일한 변위포텐셜항으로 표현하였다. 이 방법은 각도를 가진 적층판과 90도 적층판으로 각각 구성된 구조요소의 두 가지 특별문제에 대해서 해석적인 해를 얻는데 적용된다. 본 연구에서 나타낸 몇 가지 수치적인 결과는 두 가지로 적층된 유리섬유복합재료에 관한 것이다. 연구결과는 지지된 하중의 임계영역에서 모든 경계조건이 정확히 만족되어 크게 신뢰할 만한 결과를 나타내었다. 이는 혼합된 어떠한 경계조건하에서도 복합재료의 구조요소에서 탄성영역에 대한 정확한 해석적 해를 얻는 데 적용시킬 수 있을 뿐 아니라 단순한 문제를 해결하는 데도 신뢰할 만한 결과를 얻을 수 있음을 입증한 것이다.

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.

Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method

  • Sherafat, Mohammad H.;Ghannadpour, Seyyed Amir M.;Ovesy, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.677-691
    • /
    • 2013
  • A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely restrained. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the response of the composite laminated plates is particularly influenced by the application of the Higher Order Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have more accuracy than CPT.

저속충격에 의한 복합재료 적층판의 손상 (Damage of Composite Laminates by Low-Velocity Impact)

  • 남기우;안석환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.284-288
    • /
    • 2003
  • This study was investigated the nondestructive characteristics of the damage caused by low-velocity impact on symmetric cross-ply laminates. These laminates were $[0^{\circ}/90^{\circ}]{_{16s,}}\;{_{24s,}}\;{_{32s,}}\;{_{48s}}$, that is, the thickness was 2, 3, 4 and 6 mm. The impact machine, model 8250 Dynatup Instron, was used a drop-weight type with gravity. The impact velocities used in experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec. The load and deformation were increased as impact velocity increase. Even if the load increased with laminates thickness in same impact velocity, the deformation decreased. The extensional velocity was a quick as laminate thickness increase in same impact velocity and as impact velocity increase in same laminate thickness. In ultrasonic scans, damaged area was represented an dimmed zone. This is due to the fact that the wave, after having been partially reflected by the defects, has not enough energy to tough the oposite side or to come back from it. The damaged laminate areas were different according to the laminate thickness and the impact velocity. The extensional velocities became lower in if direction and higher in $0^{\circ}$ direction when the size of the defects increases. But, it was difficult to draw any conclusion for the extensional velocities in $45^{\circ}$ direction.

  • PDF

저속충격에 의한 복합재료 적층판의 손상 (Damage of Composite Laminates by Low-Velocity Impact)

  • 안석환;김진욱;도재윤;김현수;남기우
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.39-43
    • /
    • 2005
  • The study investigated the nondestructive characteristics of damage, caused by law-velocity impact, on symmetric cross-ply laminates, composed of [0o/90o]16s, 24s, 32s, 48s. The thickness of the laminates was 2, 3, 4 and 6 mm, respectively. The impact machine used, Model 8250 Dynatup Instron, was a drop-weight type that employed gravity. The impact velocities used in this experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec, respectively. Both the load and the deformation increased when the impact velocity was increased. Further, when the load increased with the laminate thickness in the same impact velocity, the deformation still decreased. The extensional velocity was quick, as the laminate thickness increased in the same impact velocity and the impact velocity increased in the same laminate thickness. In the ultrasonic scans, the damaged area represented a dimmed zone. This is due to the fact that the wave, after the partial reflection by the deflects, does not have enough energy to touch the opposite side or to come back from it. The damaged laminate areas differed, according to the laminate thickness and the impact velocity. The extensional velocities are lower in the 0o direction and higher in the 90o direction, when the size of the defect increases. However, it was difficult to draw any conclusion for the extensional velocities in the 45o direction.