• Title/Summary/Keyword: Symbol Timing Offset estimation

Search Result 34, Processing Time 0.022 seconds

Efficient Estimation and Compensation of CFO and STO in Multi-carrier Communication System (다중 반송파 통신 시스템에서 효과적인 CFO와 STO추정 및 보상방법)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.441-449
    • /
    • 2011
  • Sample timing offset (STO) and carrier frequency offset (CFO) are caused by inter-symbol interference (ISI), inter-carrier interference (ICI) and phase error in orthogonal frequency division multiplexing (OFDM) system. OFDM characteristic is sensitive about STO and CFO. So when ICI occurs, compensation is hard and complex equalizer is needed. In this paper, we propose an effective correction method using feedback process with pilot and synchronization symbol. After feedback with estimated value in frequency domain, STO and CFO are corrected by control sample & and holder and oscillator. As a result of simulation, we confirm that STO and CFO can be corrected without equalizer through feedback.

A Pilot-Tone Based Channel Estimation Technique for Cooperative SFBC-OFDM Systems (Cooperative SFBC-OFDM 시스템을 위한 파일럿 톤 기반의 채널 추정 기법)

  • Park, Chang-Hwan;Ko, Yo-Han;Lee, Hee-Soo;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.661-668
    • /
    • 2008
  • In this paper, a channel estimation technique based on pilot tones is proposed for cooperative SFBC-OFDM systems with a STO(Symbol Timing Offset). In a cooperative SFBC-OFDM system, the STO between RS(Relay Station) and MS(Mobile Station) varies depending on the location of MS. Since the STO causes distortion in the form of phase rotation, a channel estimation technique based on linear interpolation with respect to phase and amplitude is proposed for the case of orthogonal pilot allocation. Also, a channel estimation technique is proposed by solving nonlinear equation for the case of pilot structure with orthogonal code. It is shown by computer simulation that the performance of channel estimation can be significantly improved when the proposed techniques are applied to cooperative SFBC-OFDM systems with STO.

Integer Frequency Offset Estimation using PN Sequence within Training Symbol for OFDM System (PN 시퀀스의 위상추적을 통한 Orthogonal Frequency Division Multiplexing 신호의 정수배 주파수 옵셋 추정)

  • Ock, Youn Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.290-297
    • /
    • 2014
  • The synchronization of OFDM receiver is consisted of symbol timing offset(STO) estimation in time domain and carrier frequency offset(CFO) estimation in frequency domain. This paper proposes new algorithm for correcting the integer CFO after we have done correcting the STO and partial CFO. ICFO must be corrected, since the ICFO lead to degrade bit error rate(BER) of demodulation performance. The PN sequence has information which is subcarrier order since the modified PN sequence, length is same subcarrier, is used in this paper and is modulated each subcarrier by each chip. Thus the receiver track phase of PN sequence after FFTin order to find the subcarrier frequency offset. The proposed algorithm is faster and more simple than convenient methode as measuring carrier energy.

Design of Uplink Initial Ranging Algorithm for Large-Cell Coverage Fixed Wireless Communication System (광범위 고정형 무선 통신 시스템을 위한 상향 링크 초기 레인징 기법 설계)

  • Lee, Kyung-Hoon;Hwang, Won-Jun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.569-580
    • /
    • 2012
  • In this paper, an enhanced initial ranging algorithm for large-cell coverage fixed wireless communication system is proposed. In typical wireless communication system such as WiBro, because a round-trip delay between a transmitter and a receiver is within one OFDM (Orthogonal Frequency Division Multiplexing) symbol duration, a frequency-domain differential correlation method is generally used. However, the conventional method cannot be applied due to an increase of a maximum time delay in large-cell system. In case of an accumulative differential method, estimation errors can occur because of frequent sign transitions. In this paper, therefore, we propose an algorithm which can estimate a total timing offset in a ranging channel structure for 15 km cell. The proposed method can improve performance by sign comparison based sign error correction rule between the estimated values and using a weighting scheme based on channel correlation, the number of accumulations, and the noise reduction effect in normalization process. Also, it can estimate the integer timing offset of symbol duration by comparing peak-powers after compensating for the fractional timing offset of symbol duration.

Low-Complexity Symbol Timing Offset Estimation Schemes for OFDM Systems

  • Park, So-Ra;Jung, Young-Ho;Lee, Son-In
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.247-250
    • /
    • 2002
  • In this paper, we propose three symbol syn-chronization schemes for Orthogonal Frequency Division Multiplex (OFDM) systems. The cyclic extension preceding OFDM symbols is of decisive importance for these schemes. The first scheme uses the phase-differential coding of the received OFDM signal. The second and the third schemes use the length of the received OFDM signal. All three schemes make symbol synchronization possible, even though there is a frequency off-set in the system. Simulation results show that these schemes can be used to synchronize an OFDM system over AWGN and multi-path fading channels.

  • PDF

An Efficient Synchronization and Cell Searching Method for OFDMA/TDD System (OFDMA/TDD 시스템을 위한 효율적인 동기 추정 및 셀 탐색 기법)

  • Kim, Jung-Ju;Noh, Jung-Ho;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.714-721
    • /
    • 2005
  • In this parer, we analyze the preamble model in the OFDMA/TDD(OFDM-FDMA/Time Division Duplexing). Besides, under AWGN, ITU-R M.1225 Ped-B and Veh-A channel environments, we analyze capabilities of symbol timing & carrier frequency offset and performance of cell searching capabilities applied to OFDM/TDD system through computer simulation. The performance using Detection Probability, False Alarm Probability, Missing Probability, Mean Acquisition Time and MSE(Mean Square Error) is analyzed. Especially, in the case of symbol timing offset estimation, the preamble structure and its algorithm with enhanced performance are proposed and then compared with existing ones.

Joint Carrier and Symbol Timing Recovery Using Repetitive Preamble (반복적인 프리엠블을 이용한 반송파 및 심볼 타이밍 동시 복원)

  • 오성근;황병대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1436-1444
    • /
    • 2000
  • In this paper, we propose the joint carrier and symbol timing recovery algorithm using repetitive preamble and differential detection for burst modem. The proposed algorithm can estimate the frequency offset and the symbol timing error regardless of the amount of frequency offset, with a high accuracy, even using very short preamble and at low SNR values. The algorithms for continuous phase frequency shift keying (CPFSK) and phase shift keying (PSK) types are developed. Through computer simulations, we compare the proposed algorithm with the existing algorithms on the estimation accuracy in terms of the preamble length, and analyze those bit error rate(BER) performance.

  • PDF

The Scheme for Improving the Performance of Ranging Code Detection over OFDMA Systems in Uplink (OFDMA 시스템 상향링크의 레인징 부호 검출 성능 향상 기법)

  • Kim Ki-Nam;Kim Jin-Ho;Cho Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.575-585
    • /
    • 2006
  • In Orthogonal Frequency Division Multiple Access (OFDMA) systems, timing synchronization in uplink is accomplished by an initial uplink synchronization called an initial ranging process. The Base Station's receiver synchronizes the symbol timing to specific user's symbol and the other user's symbols have some Symbol Timing Offset (STO). Linear phase shift is occurred by each user's STO in an OFDMA symbol. The Multiple Access Interference (MAI) caused by the summation of each user's linear phase shift degrades the performance of ranging code detection. In this paper, we propose an initial ranging symbol structure with common ranging code for phase shift estimation and compensation. We car estimate the average of phase shift that is generated by each user's STO and compensate this phase shift by using common ranging code. This scheme will suppress the MAI and provide better detection performance than conventional process.

Hybrid Synchronization Scheme for Multi-Carrier Communication Systems

  • Kim, Eung-Sun;Park, Sang-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.223-225
    • /
    • 2012
  • In this paper, we develop a symbol/frame time and carrier frequency synchronization scheme for multi-carrier signaling in wireless mobile channels. The proposed scheme achieves simultaneous time synchronization and carrier frequency offset estimation. Simulation results show that the frequency offset of multiple sub-carrier spacings can be estimated and that performance is improved with robustness regardless of the cyclic prefix length.

Implementation of Timing Synchronization in Vehicle Communication System

  • Lee, Sang-Yub;Lee, Chul-Dong;Kwak, Jae-Min
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.289-294
    • /
    • 2010
  • In the vehicle communication system, transferred information is needed to be detected as possible as fast in order to inform car status located in front and rear side. Through the moving vehicle information, we can avoid the crash caused by sudden break of front one or acquire to real time traffic data to check the detour road. To be connecting the wireless communication between the vehicles, fast timing synchronization can be a key factor. Finding out the sync point fast is able to have more marginal time to compensate the distorted signals caused by channel variance. Thus, we introduce the combination method which helps find out the start of frame quickly. It is executed by auto-correlation and cross-correlation simultaneously using only short preambles. With taking the absolute value at the implemented synch block output, the proposed method shows much better system performance to us.