• Title/Summary/Keyword: Symbol Timing

Search Result 184, Processing Time 0.02 seconds

An 8-Gb/s/channel Asymmetric 4-PAM Transceiver with an Adaptive Pre-emphasis for Memory Interface (메모리 인터페이스를 위한 적응형 프리엠퍼시스를 가지는 8-Gb/s/채널 비균형 4-레벨 펄스진폭변조 입출력회로)

  • Jang, Young-Chan;Jun, Young-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.71-78
    • /
    • 2009
  • An 8${\times}$8-Gb/s/channel 4-PAM transceiver was designed for high speed memory applications by using 70nm DRAM process with 1.35V supply. An asymmetric 4-PAM signaling scheme is proposed to increase the voltage and time margin of upper and lower eyes in 3-class eye opening. A mathematical basis shows that this scheme statistically reduces 33% of reference noise effect in a receiver. Also, an adaptive pre-emphasis scheme, which utilizes a lone-bit pulse with integrator at the receiver, is introduced to reduce ISI for a simple DRAM channel. In this scheme, an integrating clock timing calibration by using a pre-determined pattern is proposed for the optimum ISI measurement.

Frame Synchronization Method for Distributed MIMO Terrestrial Broadcasting Systems (분산 다중 안테나 지상파 방송 시스템을 위한 프레임 동기화 방법)

  • Ok, Kyu-Soon;Kang, In-Woong;Kim, Youngmin;Seo, Jae Hyun;Kim, Heung Mook;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.424-432
    • /
    • 2016
  • World's leading countries are developing next generation digital broadcasting system specifications to support UHDTV (ultra-high definition television) contents and other various services. In order to maximize the transmission capacity by using the bandwidth efficiently, most broadcasting systems adopt MIMO-OFDM. In distributed-MIMO systems, multiple transmit antennas are spatially separated and therefore result in multiple timing offsets. To overcome this problem, this paper proposes a technique using a null symbol to detect each individual signal from distributed transmit antennas. By inserting null symbols before preambles, the receiver can distinguish the signals between each transmit antennas and perform frame synchronization. When the reception time difference is shorter than 500 samples, the proposed method outperforms the conventional method.

Design of the PHY Structure of a Voice and Data Transceiver with Security (보안성을 갖는 음성 및 데이터 트랜시버의 물리 계층 구조 설계)

  • Eun, Chang-Soo;Lom, Sun-Min;Lee, Kyoung-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.46-54
    • /
    • 2006
  • In this paper, we propose a digital transceiver that can overcome the problems which current analog transceivers have. For the proposed transceiver, we assumed a frequency resource that consists of discrete and narrow channels. We also assumed that person-to-group, group-to-group, as well as person-to-person, voice and data communications with moderate security should be devisedand the data rate is 1 Mbps with simultaneous voice and data. Frequency hewing spread spectrum (FH-SS) and differential 8-PSK (D8PSK) were adopted for security reasons and bandwidth constraints, and for the reduction of implementation complexity, respectively. For the carrier and the symbol timing recovery, the structure of the preamble was proposed based on the IEEE 802.11 FHSS frame format to improve detection probability. The computer simulation results and power budget analysis implies that the proposed system can be usedin simple wireless communications in place of such as analog walkie-talkies.

A Receiver for Dual-Channel CIS Interfaces (이중 채널 CIS 인터페이스를 위한 수신기 설계)

  • Shin, Hoon;Kim, Sang-Hoon;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.87-95
    • /
    • 2014
  • This paper describes a dual channel receiver design for CIS interfaces. Each channel includes CTLE(Continuous Time Linear Equalizer), sampler, deserializer and clocking circuit. The clocking circuit is composed of PLL, PI and CDR. Fast lock acquisition time, short latency and better jitter tolerance are achieved by adding OSPD(Over Sampling Phase Detector) and FSM(Finite State Machine) to PI-based CDR. The CTLE removes ISI caused by channel with -6 dB attenuation and the lock acquisition time of the CDR is below 1 baud period in frequency offset under 8000ppm. The voltage margin is 368 mV and the timing margin is 0.93 UI in eye diagram using 65 nm CMOS technology.

A 12.5-Gb/s Low Power Receiver with Equalizer Adaptation (이퀄라이저 적응기를 포함한 12.5-Gb/s 저전력 수신단 설계)

  • Kang, Jung-Myung;Jung, Woo-Chul;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.71-79
    • /
    • 2013
  • This paper describes a 12.5 Gb/s low-power receiver design with equalizer adaptation. The receiver adapts to channel and chip process variation by adaptation circuit using sampler and serializer. The adaptation principle is explained. It describes technique receiving ground referenced differential signal of voltage-mode transmitter for low-power. The CTLE(Continuous Time Linear Equalizer) having 17.6 dB peaking gain to remove long tail ISI caused channel with -21 dB attenuation. The voltage margin is 210 mV and the timing margin is 0.75 UI in eye diagram. The receiver consumes 0.87 mW/Gb/s low power in 45 nm CMOS technology.

An Intercell Interference Reduction Technique for OFDM-based Cellular Systems Using Virtual Multiple Antenna (OFDM 기반 셀룰러 시스템에서 가상 다중안테나를 이용한 셀간 간섭 감쇄 기법)

  • Lee Kyu-In;Ko Hyun-Soo;Ahn Jae-Young;Cho Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.32-38
    • /
    • 2006
  • In this paper, an intercell interference (ICI) reduction technique is proposed for OFDM-based cellular systems using the concept of virtual multiple antenna where multiple antenna techniques are performed on a set of subcarriers, not on the actual antenna array. The proposed technique is especially effective for user terminals with a single antenna at cell boundary in fully-loaded OFDM cellular systems with a frequency reuse factor equal to 1. Proposed ICI reduction techniques developed for SISO and MISO environments are shown to be robust to symbol timing offsets and efficient for various cell environments by adjusting group size depending on the number of adjacent cells. Also, the concept of a virtual signature randomizer (VSR) is introduced to improve channel separability in the virtual MIMO approach. It is shown by simulation that the proposed techniques are effective in reducing ICI and inter-sector interference compared with the conventional methods.

A Design of All-Digital QPSK Demodulator for High-Speed Wireless Transmission Systems (고속 무선 전송시스템을 위한 All-Digital QPSK 복조기의 설계)

  • 고성찬;정지원
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.1
    • /
    • pp.83-91
    • /
    • 2003
  • High-speed QPSK demodulator has been in important design objective of any wireless communication systems, especially those offering broadband multimedia service. This paper describes all-digital QPSK demodulator for high-speed wireless communications, and its hardware structures are discussed. All-digital QPSK demodulator is mainly composed of symbol time circuit and carrier recovery circuit to estimate timing and phase-offsets. There are various schemes. Among them, we use Gardner algorithm and Decision-Directed carrier recovery algorithm which is most efficient scheme to warrant the fast acquisition and tacking to fabricate FPGA chip. The testing results of the implemented onto CPLD-EPF10K100GC 503-4 chip show demodulation speed is reached up to 2.6[Mbps]. If it is implemented a CPLD chip with speed grade 1, the demodulation speed can be faster by about 5 times. Actually in case of designing by ASIC, its speed my be faster than CPLD by 5 times. Therefore, it is possible to fabricate the all-digital QPSK demodulator chipset with speed of 50[Mbps].

  • PDF

Implementation of a FLEX Protocol Signal Processor for High Speed Paging System (고속 페이징 시스템을 위한 FLEX 프로토콜 신호처리기의 구현)

  • Gang, Min-Seop;Lee, Tae-Eung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.69-78
    • /
    • 2001
  • This paper presents the design and FPGA implementation of a FLEX PSP(Protocol Signal Processor) for the portable high speed paging system. In this approach, two algorithms are newly proposed for implementing the PSP which provides capabilities of the maximum 6,400bps at speed, high-channel throughput, real time error correction and an effective frame search function. One is an accurate symbol synchronization algorithm which is applied for synchronizing the interleaved 4-level bit symbols which are received at input stage of A/D converter, and the other is a modified fast decoding algorithm which is provided for realizing double error correction of (31,21)BCH signal. The PSP is composed of six functional modules, and each module is modelled in VHDL(VHSIC Hardware Description Language). Both functional simulation and logic synthesis have performed for the proposed PSP through the use of Synopsys$^{TM}$ tools on a Axil-320 Workstation, and where Altera 10K libraries are used for logic synthesis. From logic synthesis, we can see that the number of gates is about 2,631. For FPGA implementation, timing simulation is performed by using Altera MAX+ PLUS II, and its results will be also given. The PSP which is implemented in 6 FPGA devices on a PCB has been verified by means of Logic Analyzer.r.

  • PDF

A Study on the FSK Synchronization and MODEM Techniques for Mobile Communication Part II : Performance Analysis and Design of The FSK MODEM (이동통신을 위한 FSK 동기 및 변복조기술에 관한 연구 II부. FSK 모뎀 설계 및 성능평가)

  • Kim, Gi-Yun;Choe, Hyeong-Jin;Jo, Byeong-Hak
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.9-17
    • /
    • 2000
  • In this paper we implement computer simulation system of 4FSK signal MODEM using Quadrature detector and analyze overall tranceiver system. We follow the FLEX wireless paging system standards and construct premodulation filter and data frame. We propose an efficient open loop symbol timing recovery algorithm which takes advantage of 128 bit length preamble pattern and also propose a 32 bit UW pattern which Is based on the optimal UW detection method, and excellent aperiodic autocorrelation characteristic. The BER simulation in the fading channel as well as AWGN is performed with BCH coding and Interleaving to the Quadrature detector system and it is shown that a high coding fain occurs in the fading channel rather than AWGN channel.

  • PDF

Baseband Receiver Design for Maritime VHF Digital Communications (해양 VHF 디지털 통신을 위한 기저대역 수신기 설계)

  • Kim, Seung-Geun;Yun, Chang-Ho;Kim, Sea-Moon;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.1012-1020
    • /
    • 2011
  • In this paper a design of $\pi$/4-DQPSK baseband receiver for the exchange of digital data and e-mail between shore and ship stations and/or among ship stations in the maritime mobile service VHF channels is described. Due to the permitted relatively big frequency instability of local oscillators at the transmitter and the receiver of maritime communication system, the designed baseband receiver should have the capabilities of correct estimation and compensation of the synchronization parameters, such as symbol timing and frequency offset, from the received signal which might include relatively big frequency error. Simulated BER results show that the designed baseband receiver works less than 0.5dB loss under AWGN channel when the normalized frequency offset of the received signal is more then 20%.