• Title/Summary/Keyword: Symbol Information

Search Result 1,299, Processing Time 0.025 seconds

An Efficient Decoding Method for High Throughput in Underwater Communication (수중통신에서 고 전송률을 위한 효율적인 복호 방법)

  • Baek, Chang-Uk;Jung, Ji-Won;Chun, Seung-Yong;Kim, Woo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • Acoustic channels are characterized by long multipath spreads that cause inter-symbol interference. The way in which this fact influences the design of the receiver structure is considered. To satisfy performance and throughput, we presented consecutive iterative BCJR (Bahl, Cocke, Jelinek, Raviv) equalization to improve the performance and throughput. To achieve low error performance, we resort to powerful BCJR equalization algorithms that iteratively update probabilistic information between inner decoder and outer decoder. Also, to achieve high throughput, we divide long packet into consecutive small packets, and the estimate channel information of previous packets are compensated to next packets. Based on experimental channel response, we confirmed that the performance is improved for long length packet size.

Performance Evaluation of Channel Shortening Time Domain Equalizer in Wireless LAN Environment (무선랜 환경에서 채널 단축 시간영역 등화기의 성능평가)

  • Yoon Seok-Hyun;Yu Hee-Jung;Lee Il-Gu;Jeon Tae-Hyun;Lee Sok-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.240-248
    • /
    • 2006
  • In this paper, we consider an OFDM receiver algorithm design for IEEE 802.11a/p system, which targeting large coverage area while keeping the transmission format unchanged. Particularly, taking into account the inter-symbol interference(ISI) and inter-carrier interference(ICI) that can be induced with large RMS delay spread, we employ channel shortening time-domain equalizer(TEQ) and evaluate the receiver performance in terms of SINR and packet error rate(PER). The preamble defined in IEEE802.11a/p is used to estimated the initial equalizer tap coefficients. Primary purpose of the paper is to give an answer to the question, though partially, whether or not 16-QAM constellation can be used in none line of sight environment at the boundary of a large coverage area. To this end, we first analyze the required TEQ parameters for the target channel environment and then perform simulation for PER performance evaluation in a generic frequency selective fading channel with exponential power-delay profile.

Performance Analysis of Asynchronous OFDMA Uplink Systems with Timing Misalignments over Frequency-selective Fading Channels (주파수 선택적 페이딩 채널에서 시간오차에 의한 비동기 OFDMA 상향 시스템의 성능 분석)

  • Park, Myong-Hee;Ko, Kyun-Byoung;Park, Byung-Joon;Lee, Young-Il;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.34-42
    • /
    • 2005
  • In orthogonal frequency-division multiple access (OFDMA) uplink environments, asynchronously received signals can cause multiple access interference (MAI). This paper focuses on the performance degradation due to the MAI over frequency-selective fading channels. We first introduce the timing misalignment, which is defined as the relative timing difference between asynchronous timing error of uplink user and reference time of the base station, and analytically derive the MAI using the power delay profile of wide-sense stationary uncorrelated scattering (WSSUS) channel model. Then, the effective signal-to-noise ratio (SNR) and the average symbol error probability (SEP) are derived. The proposed analytical results are verified through simulations with respect to the region of the timing misalignment and the number of asynchronous users.

Performance Evaluation of Fill Rate Quasi-orthogonal STF-OFDM with DAC-ZF Decoder for Four Transmit Antennas MIMO System (4개의 송신 안테나 MIMO 시스템을 위한 DAC-ZF 수신 기법과 결합된 Full Rate 준직교 QOSTF-OFDM 관한 연구)

  • Jin, Ji-Yu;Ryu, Kwan-Woong;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1092-1100
    • /
    • 2006
  • In this paper, we propose a full rate quasi-orthogonal space-time-frequency block coded orthogonal frequency division multiplexing(QOSTF-OFDM) that can achieve full symbol rate with four transmit antennas. Sincr: the proposed QOSTF-OFDM can not achieve full diversity, we use diversity advantage collection with zero forcing (DAC-ZF) decoder to compensate the diversity loss at receive side. At the same frequency efficiency, compared with linear orthogonal space-time codes which can not achieve full rate with four transmit antennas over complex constellations, low level modulation can be employed by proposed scheme due to its full rate, i.e., modulation advantage can be achieved. Due to modulation advantage and collected diversify advantage, the proposed scheme exhibits better BER performance than other orthogonal schemes.

Statistical Precoder Design for Spatial Multiplexing Systems in Correlated MIMO Fading Channels (높은 안테나 상관도를 갖는 다중입출력 공간 다중화 시스템을 위한 통계적 프리코딩 기법)

  • Moon, Sung-Hyun;Kim, Jin-Sung;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.223-231
    • /
    • 2011
  • It has been shown that the performance of multiple-input multiple-output (MIMO) spatial multiplexing systems is significantly degraded when spatial correlation exists between transmit and receive antenna pairs. In this paper, we investigate designs of a new statistical precoder for spatial multiplexing systems with maximum likelihood (ML) receiver which requires only correlation statistics at the transmitter. Two kinds of closed-form solution precoders based on rotation and power allocation are proposed by means of maximizing the minimum E tlidean distance of joint symbol constellations. In addition, we extend our results to linear receivers for correlated channels. We provide a method which yields the same profits from the proposed precoders based on a simple zero-forcing (ZF) receiver. The simulation shows that 2dB and 8dB gains are achieved for ML and ZF systems with two transmit antennas, respectively, compared to the conventional systems.

Baseband Receiver Design for Maritime VHF Digital Communications (해양 VHF 디지털 통신을 위한 기저대역 수신기 설계)

  • Kim, Seung-Geun;Yun, Chang-Ho;Kim, Sea-Moon;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.1012-1020
    • /
    • 2011
  • In this paper a design of $\pi$/4-DQPSK baseband receiver for the exchange of digital data and e-mail between shore and ship stations and/or among ship stations in the maritime mobile service VHF channels is described. Due to the permitted relatively big frequency instability of local oscillators at the transmitter and the receiver of maritime communication system, the designed baseband receiver should have the capabilities of correct estimation and compensation of the synchronization parameters, such as symbol timing and frequency offset, from the received signal which might include relatively big frequency error. Simulated BER results show that the designed baseband receiver works less than 0.5dB loss under AWGN channel when the normalized frequency offset of the received signal is more then 20%.

Feedback Cancellation Based on Partitioned Time-Domain Pilots for T-DMB Repeaters (시간영역 파일럿 분할을 통한 T-DMB 중계기에서의 궤환신호 제거기법)

  • Lee, Ji-Bong;Kim, Wan-Jin;Park, Sung-Ik;Lee, Yong-Tae;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.327-334
    • /
    • 2008
  • Conventional on-channel-repeaters (OCRs) have a crucial problem that the power of a re-transmitted signal is highly limited by a feedback signal due to antenna coupling. The power limitation problem in OCRs has been solved by incorporating a demodulation-type feedback canceller which eliminates unwanted feedback signals by estimating a feedback channel. In applying the demodulation-type feedback canceller to T-DMB repeaters, there is a troublesome problem of unfrequent known pilot symbols, resulting in poor convergence performance of channel estimation. To solve this problem and enhance the accuracy of estimation, we propose a partitioning method of the Phase Reference Symbol (PRS) transformed in time domain. Since filter coefficients are updated every one partitioned subgroup, the number of updates is increased by the number of partitioned subgroups and thus the convergence speed is enhanced. The improved performance of feedback-channel estimation is directly connected with the feedback-cancellation performance. Simulation result shows that the feedback canceller incorporating the proposed partitioning method has a good performance in terms of residual feedback power.

An Efficient Channel Tracking Method in MIMO-OFDM Systems (MIMO-OFDM에서 효율적인 채널 추적 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo;Ahn, Ji-Whan;Serpedin, Erchin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.256-268
    • /
    • 2008
  • This paper proposes an efficient scheme to track the time variant channel induced by multi-path Rayleigh fading in mobile wireless Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems with null sub-carriers. In the proposed method, a blind channel response predictor is designed to cope with the time variant channel. The proposed channel tracking scheme consists of a frequency domain estimation approach that is coupled with a Minimum Mean Square Error (MMSE) time domain estimation method, and does not require any matrix inverse calculation during each OFDM symbol. The main attributes of the proposed scheme are its reduced computational complexity and good tracking performance of channel variations. The simulation results show that the proposed method exhibits superior performance than the conventional channel tracking method [4] in time varying channel environments. At a Doppler frequency of 100Hz and bit error rates (BER) of 10-4, signal-to-noise power ratio (Eb/N0) gains of about 2.5dB are achieved relative to the conventional channel tracking method [4]. At a Doppler frequency of 200Hz, the performance difference between the proposed method and conventional one becomes much larger.

A Realization of the Synchronization Module between the Up-Link and the Down-Link for the WiBro System (WiBro 시스템에서 상향링크와 하향링크 간 시간 동기 장치 구현)

  • Park Hyong-Rock;Kim Jae-Hyung;Hong Een-Kee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • In this paper, we propose the time synchronization module on fiber optic repeater to use optic line delay for obtaining time synchronization between up-link and down-link, in the 2.3 GHz WiBro network using TDD/OFDM (Time Division Duplex/Orthogonal Frequency Division Multiplexing) Generally, when we use fiber optic repeater to remove the shade area, it occurs transmission delay which is caused by optic transmission between RAS (Radio Access Station) and fiber optic repeater and inner delay of fiber optic repeater. Because the WiBro system is adopting a TOO method and there exists the difference of switching time which is caused by these delay between up-link and down-link, it occurs ISI (Inter Symbol Interference), ICI (Inter Carrier Interference). These interference results in the reduction of the coverage. And the inconsistency between Up-Link and Down-Link switching time maybe gives rise to the interruption of communication. In order to prevent these cases, we propose synchronization module using analog optic line delay as the one of synchronizing up-link and down-link. And we propose the consideration factor for the designing time synchronization module and the feature of optic line of analog method. The measurement result of optic line time synchronization module of structure proposed is as follows, the delay error of $0.5{\mu}g$ and the insertion loss value below maximum 4.5dB in range of $0{\sim}40{\mu}s$. These results fully meet the specification of WiBro System.

  • PDF

Performance Characteristics of Decision Feedback Equalizer Model by Feedback Running RLS algorithm for Mobile Communications (피드백러닝 RLS알고리즘에 의한 이동통신용 판정귀환형 등화기모델의 동작 특성)

  • 이우재;이종룡;주창복
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-51
    • /
    • 1998
  • In the realization of a high speed digital transmission over several tens kbps in mobile communications, it follow delay distortion on a count of transmission path variation by multipath interference waves. Therefore it is inevitably necessary to establish the techniques overcoming the frequency selective fading. In this paper, a feedback running RLS algorithm which is improved the RLS algorithm using exponential weighting factor, is proposed for the control algorithm of DFE and by the computer simulation method, and the performance characteristics of DFE is analyzed for the one-ray and two-ray waves model under the random Gaussian noise. The computer simulation results of proposed RLS algorithm for the $\pi$/4QPSK signal with one symbol time delayed interference signal of S/I = 20[dB], under the S/N = 10[dB] with $\lambda$= 0.9 showed excellent following characteristics and equalization characteristics.

  • PDF