• 제목/요약/키워드: Symbiotic genes

검색결과 32건 처리시간 0.029초

Characterization of Pseudomonas sp. NIBR-H-19, an Antimicrobial Secondary Metabolite Producer Isolated from the Gut of Korean Native Sea Roach, Ligia exotica

  • Sungmin Hwang;Jun Hyeok Yang;Ho Seok Sim;Sung Ho Choi;Byounghee Lee;Woo Young Bang;Ki Hwan Moon
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1416-1426
    • /
    • 2022
  • The need to discover new types of antimicrobial agents has grown since the emergence of antibiotic-resistant pathogens that threaten human health. The world's oceans, comprising complex niches of biodiversity, are a promising environment from which to extract new antibiotics-like compounds. In this study, we newly isolated Pseudomonas sp. NIBR-H-19 from the gut of the sea roach Ligia exotica and present both phenotypes and genomic information consisting of 6,184,379 bp in a single chromosome possessing a total of 5,644 protein-coding genes. Genomic analysis of the isolated species revealed that numerous genes involved in antimicrobial secondary metabolites are predicted throughout the whole genome. Moreover, our analysis showed that among twenty-five pathogenic bacteria, the growth of three pathogens, including Staphylococcus aureus, Streptococcus hominis and Rhodococcus equi, was significantly inhibited by the culture of Pseudomonas sp. NIBR-H-19. The characterization of marine microorganisms with biochemical assays and genomics tools will help uncover the biosynthesis and action mechanism of antimicrobial metabolites for development as antagonistic probiotics against fish pathogens in an aquatic culture system.

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions

  • Mansour, Abdelaziz;Mannaa, Mohamed;Hewedy, Omar;Ali, Mostafa G.;Jung, Hyejung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.432-448
    • /
    • 2022
  • Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.

폴리드나바이러스(CpBV) 유래 면역억제 유전자를 이용한 베큘로바이러스 병원력 제고 기술 (Enhanced Pathogenicity of Baculovirus Using Immunosuppressive Genes Derived From Cotesia plutellae Bracovirus)

  • 김용균;권보원;배성우;최재영;제연호
    • 농약과학회지
    • /
    • 제12권3호
    • /
    • pp.283-290
    • /
    • 2008
  • 베큘로바이러스는 일부 나비목 해충을 대상으로 방제하는 데 사용되고 있다. 그러나 화학농약에 비해 느린 살충효과 및 좁은 적용 해충으로 응용 범위에 한계를 갖고 있다. 본 연구는 이러한 한계를 극복하고자 곤충의 면역억제을 통해 바이러스 병원력을 제고시킬 수 있는 기술을 소개한다. 폴리드나바이러스는 일부 맵시벌 및 고치벌에 공생하는 곤충 DNA 바이러스 분류군이다. 프루텔고치벌(Cotesia plutellae) 유래 CpBV(Cotesia plutellae bracovirus)는 브라코바이러스에 속한 폴리드나바이러스로서 면역어제를 발휘하는 여러 유전자를 함유하고 있다. 이 가운데 7개의 CpBV유전자를 선발하고 이를 야생형Autographa California multiple nucleopolyhedrovirus(AcNPV)에 재조합하였다. 이들 재조합 베큘로바이러스를 이용하여 파밤나방(Spodoptera exigua)과 배추좀나방(Plutella xylostella)을 대상으로 생물 검정한 결과, 이들 대부분은 야생형의 바이러스와 유사하거나 우수한 살충력을 나타냈다. 특히 CpBV-ELP를 포함한 재조합 베큘로바이러스가 대조바이러스에 비해 살충시간을 약 2 일 이상단축시킴으로 가장 우수하였다. 이 재조합 베큘로바이러스는 농도에 따른 살충력증가와 배추를 가해하는 파밤나방을 대상으로 한 바이러스 살포 처리가 뚜렷한 방제효과를 나타내어 현장 적용 가능성을 제시하였다. 또한 본 연구는 이 재조합 바이러스의 살충력 제고 현상을 CpBV-ELP의 항바이러스 기작 억제라는 측면에서 고찰했다.

Elucidation of the Biosynthetic Pathway of Vitamin B Groups and Potential Secondary Metabolite Gene Clusters Via Genome Analysis of a Marine Bacterium Pseudoruegeria sp. M32A2M

  • Cho, Sang-Hyeok;Lee, Eunju;Ko, So-Ra;Jin, Sangrak;Song, Yoseb;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.505-514
    • /
    • 2020
  • The symbiotic nature of the relationship between algae and marine bacteria is well-studied among the complex microbial interactions. The mutual profit between algae and bacteria occurs via nutrient and vitamin exchange. It is necessary to analyze the genome sequence of a bacterium to predict its symbiotic relationships. In this study, the genome of a marine bacterium, Pseudoruegeria sp. M32A2M, isolated from the south-eastern isles (GeoJe-Do) of South Korea, was sequenced and analyzed. A draft genome (91 scaffolds) of 5.5 Mb with a DNA G+C content of 62.4% was obtained. In total, 5,101 features were identified from gene annotation, and 4,927 genes were assigned to functional proteins. We also identified transcription core proteins, RNA polymerase subunits, and sigma factors. In addition, full flagella-related gene clusters involving the flagellar body, motor, regulator, and other accessory compartments were detected even though the genus Pseudoruegeria is known to comprise non-motile bacteria. Examination of annotated KEGG pathways revealed that Pseudoruegeria sp. M32A2M has the metabolic pathways for all seven vitamin Bs, including thiamin (vitamin B1), biotin (vitamin B7), and cobalamin (vitamin B12), which are necessary for symbiosis with vitamin B auxotroph algae. We also identified gene clusters for seven secondary metabolites including ectoine, homoserine lactone, beta-lactone, terpene, lasso peptide, bacteriocin, and non-ribosomal proteins.

Rhizobium sp. SNU003의 nifHD 클로닝 (Molecular Cloning of nifHD from Rhizobium sp. SNU003)

  • 강명수;안정선
    • 미생물학회지
    • /
    • 제31권2호
    • /
    • pp.123-128
    • /
    • 1993
  • 해녀콩 뿌리혹의 질소고정 공생균인 Rhizobium sp. SNU003 균주의 게놈내 7.9 kb 의 EcoRI, 6.5kb 의 SalI, 7.3 kb 의 HindIII 와 4.4 kb 의 PstI 절편에 nifHD 가 존재함을 확인하였다. 람다파아지 EMBL3-BamHI arm 을 사용하여 genomic library 를 제조하였으며 이로부터 nif-유전자를 포함하고 있는 9개의 재조합 파아지 클론을 선별하였다. 이들 중 15.3 kb 의 삽입 DNA 를 가지고 있는 Rnif-6 클론은 7.6 kb 의 BamHI/SacI 절편에 nifHD 가 위치하고 있었다. 따라서 이절편을 pUC19 에 sub cloning 하고 제한효소 지도를 작성한 결과 Rhizobium sp. SNU003 의 nifH 와 nifD 는 4.5 kb 의 BamHI/BglII 절편에 연속배열하고 있다.

  • PDF

Wolbachia Sequence Typing in Butterflies Using Pyrosequencing

  • Choi, Sungmi;Shin, Su-Kyoung;Jeong, Gilsang;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1410-1416
    • /
    • 2015
  • Wolbachia is an obligate symbiotic bacteria that is ubiquitous in arthropods, with 25-70% of insect species estimated to be infected. Wolbachia species can interact with their insect hosts in a mutualistic or parasitic manner. Sequence types (ST) of Wolbachia are determined by multilocus sequence typing (MLST) of housekeeping genes. However, there are some limitations to MLST with respect to the generation of clone libraries and the Sanger sequencing method when a host is infected with multiple STs of Wolbachia. To assess the feasibility of massive parallel sequencing, also known as next-generation sequencing, we used pyrosequencing for sequence typing of Wolbachia in butterflies. We collected three species of butterflies (Eurema hecabe, Eurema laeta, and Tongeia fischeri) common to Korea and screened them for Wolbachia STs. We found that T. fischeri was infected with a single ST of Wolbachia, ST41. In contrast, E. hecabe and E. laeta were each infected with two STs of Wolbachia, ST41 and ST40. Our results clearly demonstrate that pyrosequencing-based MLST has a higher sensitivity than cloning and Sanger sequencing methods for the detection of minor alleles. Considering the high prevalence of infection with multiple Wolbachia STs, next-generation sequencing with improved analysis would assist with scaling up approaches to Wolbachia MLST.

New Species of Termitomyces (Lyophyllaceae, Basidiomycota) from Sabah (Northern Borneo), Malaysia

  • Seelan, Jaya Seelan Sathiya;Yee, Chong Shu;Fui, Foo She;Dawood, Mahadimenakbar;Tan, Yee Shin;Kim, Min-Ji;Park, Myung Soo;Lim, Young Woon
    • Mycobiology
    • /
    • 제48권2호
    • /
    • pp.95-103
    • /
    • 2020
  • The genus Termitomyces (Lyophyllaceae, Basidiomycota) is often associated with fungus-feeding termites (Macrotermitinae) due to their strong symbiotic relationships. The genus is widely found exclusively in certain regions of Africa and Asia. They are recognized as edible mushroom within Southeast Asia as well. But it is often misidentified based on morphology by the local communities especially in Malaysia for Chlorophyllum molybdites which is a highly poisonous mushroom. Thus, it is necessary to study the genus for Malaysia with the synergy of using both morphological and molecular identification. In this study, we aim to describe another new species as an addition to the genus Termitomyces found within Sabah, Malaysia. We generated two new sequences (nrLSU and mtSSU) for the new species and a total of 28 nrLSU and mtSSU sequences were retrieved from GenBank for the phylogenetic analysis using maximum likelihood and Bayesian inferences. We identified that the new collection from Sabah province is a new species and named as Termitomyces gilvus based on the termites found in the mound. A phylogeny tree made from the concatenated genes of LSU and mtSSU suggests that T. gilvus is closely related to T. bulborhizus from China. According to our results, the combination of molecular and morphology proved to be a robust approach to re-evaluate the taxonomic status of Termitomyces species in Malaysia. Additional surveys are needed to verify the species diversity and clarify their geographic distribution.

Transposon Tn5를 이용한 Slow growing Rhizobium japonicum의 돌연변이 유도 (Mutagenesis of Slow Growing Rhizobium japonicum by Transposon Tn5)

  • 김성훈;이윤;선대규;유익동
    • 미생물학회지
    • /
    • 제26권4호
    • /
    • pp.305-311
    • /
    • 1988
  • Slow growing R. japonicum R-l68 균주로부터 spectinomycin 내성 균주를 선발하고 이 Rhizobium내에 Tn-5를 도입시키기 위하여 Tn5가 함유된 E. coli WA 803/pGS9과의 conjugation을 통한 transposon mutagenesis를 실시하였다. 이때 C conjugation을 통한 Tn5 전이 빈도는 $1.0\times 10^{-5}-5.0\times 10^{-7}$ 범위 이였으며, 얻어진 transconjugant들은 spectinomycin (($100{\mu}$g/ml)과 kanamycin ($50{\mu}$g/ml)을 함유한 yeast extract-mannitol 배지에서 8-10일 배양후 colony를 형성하였다. 또한 transconjugant들은 genome상에 Tn-5를 함유하고 있음을 hybridization-을 통하여 확인하였다. 한편 nodule은 형성 하나 질소고정 활성이 없는 돌연변이주 R. japonicum RMa 75 $nod^{+}fix^{-}$ 균주를 선발하였는데 이 균주는 nodule내에 leghemoglobin이 결핍되어 있음이 확인되었다.

  • PDF

Composition and Diversity of Gut Bacteria Associated with the Eri Silk Moth, Samia ricini, (Lepidoptera: Saturniidae) as Revealed by Culture-Dependent and Metagenomics Analysis

  • MsangoSoko, Kondwani;Gandotra, Sakshi;Chandel, Rahul Kumar;Sharma, Kirti;Ramakrishinan, Balasubramanian;Subramanian, Sabtharishi
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1367-1378
    • /
    • 2020
  • The polyphagous eri silk moth, Samia ricini, is associated with various symbiotic gut bacteria believed to provide several benefits to the host. The larvae of S. ricini were subjected to isolation of gut bacteria using culture-dependent 16S rRNA generic characterization, metagenomics analysis and qualitative enzymatic assays. Sixty culturable aerobic gut bacterial isolates comprising Firmicutes (54%) and Proteobacteria (46%); and twelve culturable facultative anaerobic bacteria comprising Proteobacteria (92%) and Firmicutes (8%) were identified inhabiting the gut of S. ricini. The results of metagenomics analysis revealed the presence of a diverse community of both culturable and un-culturable gut bacteria belonging to Proteobacteria (60%) and Firmicutes (20%) associated with seven orders. An analysis of the results of culturable isolation indicates that these bacterial isolates inhabited all the three compartments of the gut. Investigation on persistence of bacteria coupled with metagenomics analysis of the fifth instar suggested that bacteria persist in the gut across the different instar stages. In addition, enzymatic assays indicated that 48 and 75% of culturable aerobic, and 75% of anaerobic gut bacterial isolates had cellulolytic, lipolytic and nitrate reductase activities, thus suggesting that they may be involved in food digestion and nutritional provision to the host. These bacterial isolates may be good sources for profiling novel genes and biomolecules for biotechnological application.