• Title/Summary/Keyword: Switching mode power supply

Search Result 183, Processing Time 0.027 seconds

A Fault Diagnosis on the Switching Mode Power Supply (스위칭 모드 파워 서플라이 건전성에 대한 진단)

  • Baik, Seung-Chan;Lee, Jin-Ho;Oh, Byung-Joo;Lee, Yung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.735-737
    • /
    • 2004
  • This paper proposes a method of fault diagnostics on switching mode power supply. When the error of switching mode power supply cannot be found when the conventional diagnostics is performed, this proposed method first performs diagnosis on the switching mode power supply strictly to judge the operating condition. This method analyzes the PWM wave which depends on the load change, to make sure the feedback control of the power supply to diagnosis the operation of the power supply system.

  • PDF

The Magnetic Nerve Stimulator Using a Switching Mode Power Supply (스위칭전원을 이용한 자기신경자극기)

  • Lee, Su-Yeol;Lee, Seong-Geun;Lee, Jeong-Han
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.265-270
    • /
    • 1995
  • An implementation scheme of the magnetic nerve stimulator using a switching mode power supply is proposed. By using a switching mode power supply rather than a conventional linear power supply for chArging high voltage cApacitors, the weight and size of the magnetic net've stimulator can be considerably reduced. Maximum output voltage of the developed magnetic nerve stimulator using the switching mode power supply is 3,000 volts and switching time is about 100 msec Experimental results of human nerve stimulations using the developed stimulator are presented.

  • PDF

Mode Switching Smooth Control of Transient Process of Grid-Connected 400 Hz Solid-State Power Supply System

  • Zhu, Jun-Jie;Nie, Zi-Ling;Zhang, Yin-Feng;Han, Yi
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2327-2337
    • /
    • 2016
  • The mode-switching control of transient process is important to grid-connected 400 Hz solid-state power supply systems. Therefore, this paper analyzes the principle of on-grid and islanding operation of the system with or without local loads in the grid-connected process and provides a theoretical study of the effect of different switching sequences on the mode-switching transient process. The conclusion is that the mode switch (MS) must be turned on before the solid-state switch (STS) in the on-grid process and that STS must be turned off before the MS in the off-grid process. A strategy of mode-switching smooth control for transient process of the system is proposed, including its concrete steps. The strategy utilizes the average distribution of peak currents and the smooth adjustment of peak currents and phases to achieve a no-shock grid connection. The simulation and experimental results show that the theoretical analysis is correct and that the method is effective.

Techniques to Diagnose Short-Circuit Faults in the Switching Mode Power Supply for Display (디스플레이용 스위칭모드 전원장치의 단락 고장분석 검출기법)

  • Lee, Jae-Won;Chun, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1186-1192
    • /
    • 2016
  • This paper proposes techniques to diagnose short-circuit faults of both the diodes and power FET in switching mode power supply (SMPS) by using a simple analog tester. The diodes in full-bridge rectifier, power FET, switching transformer, and some sensors are modelled with resistor. The total resistance value measured at the input terminal of a SMPS is analyzed when the short-circuit faults of diodes in a full bridge rectifier or power FET are occurred. The short-circuit faults of one or two diodes in a full bridge rectifier, power FET, and both the diodes in a full bridge rectifier and power FET can be detected by a range of total resistance, which is measured by the analog tester. Through experiments, the theoretical analysis for total resistance under short-circuit faults can be verified.

Functional Neuromuscular Stimulation for Paraplegic Standing (FNS를 사용한 하반신마비자의 일어서기)

  • Khang, Gon
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 1990
  • An implementation scheme of the magnetic nerve stimulator using a switching mode power supply is proposed. By using a switching mode power supply rather than a conventional linear power supply for charging high voltage capacitors, the weight and size of the magnetic nerve stimulator can be considerably reduced. Maximum output voltage of the developed magnetic nerve stimulator using the switching mode power supply is 3,000 volts and switching time is about 100 msec. Experimental results or human nerve stimulations using the developed stimulator are presented.

  • PDF

Conducted Noise Analysis of SMPS(Switching Mode Power Supply) (스위칭 모드 직류 전원공급기(SMPS)의 전도성 잡음해석)

  • 성주영;김윤명
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.286-291
    • /
    • 2000
  • 본 논문에서는 일반적인 EMI 노이즈 개요 및 SMPS(Switching Mode Power Supply)에서의 Noise 발생 메카니즘을 분석하고, 전도성 Noise를 측정하였으며, SMPS에서 발생되는 잡음행태를 분석하여 대책방법을 연구하였다.

  • PDF

Design for reduction EMI of flyback switching power supply

  • Theirakul, Chaivat;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1891-1895
    • /
    • 2003
  • Switch-mode power supplies (SMPS) have become a major source of conducted electromagnetic interference (EMI) which is the combination between differential mode (DM) noise and common mode (CM) noise. This paper presents the conducted EMI reduction approach in flyback switched mode power supply by rerouting for circuit balance to reduce common mode noise. And differential mode noise can be reduce by adding $c_x$ capacitor across the input power line, and passive element to the gate drive of switching device MOSFET to slow down the switching times. This combination of our approach is the effective way to reduce the conducted EMI and it is also a cost effective for product design

  • PDF

A Study on Automatic Multi-Power Synchronous Transfer Switch using New DFT Comparator (새로운 DFT 비교기를 이용한 자동 다전원 동기절체 스위치에 관한 연구)

  • Kwak, A-Rim;Park, Seong-Mi;Son, Gyung-Jong;Park, Sung-Jun;Kim, Jong-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.423-431
    • /
    • 2022
  • The UPS(Uninterruptible Power Supply) system operates in the battery charging mode when the grid is normal, and in the UPS mode, which is the battery discharge mode when a grid error occurs. Since the UPS must supply the same voltage as the grid to the load within 4 [ms] in case of a grid error, the switching time and power recovery time should be short when controlling the output voltage and current of the UPS, and the power failure detection time is also important. The power outage detection algorithm using DFT(Discrete Fourier Transform) proposed in this paper compares the grid voltage waveform with the voltage waveform including the 9th harmonic generated through DFT using Schmitt trigger to detect power outage faster than the existing power outage monitoring algorithm. There are advantages. Therefore, it is possible to supply instant and stable power when switching modes in the UPS system. The multi-power-applied UPS system proposed in this paper uses DFT, which is faster than the conventional blackout monitoring algorithm in detecting power failure, to provide stable power to the load in a shorter time than the existing power outage monitoring algorithm when a system error occurs. The detection method was applied. The changeover time of mode switching was set to less than 4 [ms], which is 1/4 of the system cycle, in accordance with KSC 4310 regulation, which was established by the Industrial Standards Council on the regulation of uninterruptible power supply. A 10 [kW] UPS system in which commercial voltage, vehicle generator, and auxiliary diesel generator can be connected to each of the proposed transfer devices was constructed and the feasibility was verified by conducting an experiment.

A Study on the Development of Switching Power Supply for testing communication equipment (통신장비 시험용 Switching Power Supply 개발에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Han, Kyung-Tae;Lee, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.253-257
    • /
    • 2003
  • This paper presents the Development of Switching Power Supply for testing communication equipment. The communication equipment need many kinds of voltage(-48V,27V,12V,5V,3.3V), and in case of low voltage needs large current($10{\sim}20A$). The previous Linear Power Supply was very heavy, has low efficiency and poor power-factor for testing communication equipment. This development has good efficiency and high power-factor using switch mode power supply technique. This Development of Switching Power Supply is composed of eight converters. The principles of operation, feature, and design considerations are illustrated and verified through the experiment with 600W prototype.

  • PDF

Two Switches Balanced Buck Converter for Common-Mode Noise Reduction

  • Kanjanasopa, Warong;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.493-498
    • /
    • 2004
  • The EMI noise source in a switching mode power supply is dominated by a common mode noise. If we can understand the common mode noise occurring mechanism, it is resulted to find out the method to suppress the EMI noise source in the switching mode power supply. The common mode noise is occurring mostly due to circuit is unbalanced which is caused by the capacitive coupling to frame ground, which passes through a heatsink of the switching devices. This research paper presents a new effective balancing method of buck converter circuit by mean of grounding the parasitic and compensation capacitors in correct proportion which is called that the common mode impedance balance (CMIB). The CMIB can be achieved by source, transmission line and termination balanced, such balancing, the common mode current will be cancelled out in the frame ground. The greatly reduced common mode noise can be confirmed by the experimental results.

  • PDF