• Title/Summary/Keyword: Switching method

Search Result 2,711, Processing Time 0.033 seconds

Phase-shifted PWM FB DC/DC Converter with ZVS Method (ZVS 기법을 사용한 위상제어 PWM FB DC/DC 컨버터)

  • Kim, Sung-Chul;Kwon, Soon-Kurl;Kye, Moom-Ho;Joe, Kee-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.392-394
    • /
    • 1996
  • This paper is to describe how to apply the Phase-shifted Full Bridge 100kHz high frequency soft-switching PWM method to 48[V], 200[A] DC/DC converter. The soft-switching is achieved from light load to full load by using phase-shifted zero voltage switching method with additional capacitors besides the MOSPET's of the right leg even though the leakage inductance of high frequency transformer is designed small. This method can reduce the switching tosses, EMI problems, and increase the effective duty. Also, this paper includes the simulation, analysis, and experiment results of the DC/DC converter unit.

  • PDF

A Multicast Switching Algorithm Based on iSLIP

  • Lee, Heyung-Sub;Lee, Sang-Yeoun;Lee, Hyeong-Ho;Kim, Whan-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1011-1014
    • /
    • 2002
  • This paper proposes a multicast packet-switching method which can less affect QoS degradation. The method includes a switch fabric with extra switching paths dedicated for multicast packets. Presented also are both a buffering structure and a scheduling algorithm for the proposed method. Simulation analysis for the method shows that the switching delay of unicast packets is decreased even though arrival rate of multicast packets is increased.

  • PDF

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.154-160
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.154-154
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

A Study on PFC Buck-Boost AC-DC Converter by Soft Switching Method (소프트 스위칭형 PFC 승강압 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Lee, Seung-Ho;Lee, Bong-Seob;Jung, Do-Young;Shim, Jae-Sun;Im, Jin-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.435-437
    • /
    • 2007
  • Authors propose a PFC(power factor correction) Buck-Boost AC-DC converter by soft switching method. The proposed converter for a discontinuous conduction mode eliminates the complicated control requirement and reduces the size of components. The input current waveform in the converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching.Therefore,the input power factor is nearly unity and the control algorithm is simple. To achieve high efficiency system, the proposed converter is constructed by using a partial resonant technique. The control switches using in the converter are operated with soft switching for a partial resonant. The control switches are operated without increasing their voltage and current stresses by the soft switching method. The result is that the switching loss is very low and the efficiency of converter is high.

  • PDF

Method for Exclusive-OR Operation for Switching Equations Based on Tabular Algebra (테이블 대수형 스위칭 함수를 위한 배타적 논리합 연산 방법)

  • 정화자;정기연
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.862-867
    • /
    • 1995
  • In this paper a method to perform Exclusive-OR operation between two tabular type Boolean expressions is presented. The proposed method allows to solve the switching equations and the simultaneous equations in a rather direct manner, compared with Unger's method.

  • PDF

Switching Angle for Maximizing Torque, Efficiency and Minimizing Torque Ripple in SRM Drive (SRM의 최대 토크, 효율 및 최소 토크리플 운전을 위한 스위칭 각)

  • 김현덕;차현록;김광헌;나석환;임영철
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.151-154
    • /
    • 1999
  • This paper presents a driving method of 3-phase 4-poles SRM(switched reluctance motor) drived by switching angle control. In this study, the switching angle is determined from approximated analysis and computer simulation by using MATLAB for high efficiency according to the speed and torque required by load, and then microcontroller controls the switching angle of asymmetrical inverter in SRM driver. Also, we experiment the maximum forque driving and maximum power driving by controlling switching angle available to electric vehicle.

  • PDF

Synchronous Soft Switching Boost Converter (동기형 소프트 스위칭 부스트 컨버터)

  • Kim, Jun-Gu;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.187-189
    • /
    • 2008
  • This paper presents the synchronous soft switching boost converter. It is shown that the proposed converter effectively reduces conduction loss by using MOSFET device in place of diode in the conventional boost converter. Also, this soft switching boost converter can reduce switching loss using ZVS method through resonant inductor and capacitor. The proposed synchronous soft switching boost converter is suitable for PV generation system.

  • PDF

Series Connected DC/DC Converter for Fuel Cell System using Variable Phase Shift Switching Method (가변 위상변위 스위칭방식을 적용한 연료전지용 변압기 직렬형 DC/DC 컨버터)

  • Park, Noh-Sik;Kwon, Soon-Jae;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.461-468
    • /
    • 2008
  • This paper presents a novel series connected DC/DC converter and a proper variable phase shift switching method in order to obtain high voltage ratio for fuel cell system. The proposed series connected DC/DC converter has same rectifier and LC filter for DC output voltage, so it can reduce the number of passive devices regardless of the converter number. In the conventional constant phase shift switching method, the proposed series connected DC converters have inverse bias output voltage. In order to overcome this problem, a simple but proper variable phase shift switching method is proposed in the a novel series connected DC/DC converter. In order to verify the proposed system, simulation and experiments are implemented.

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.