• Title/Summary/Keyword: Switching controller

Search Result 827, Processing Time 0.029 seconds

Robust Control of Variable Hydraulic System using Multiple Fuzzy Rules (다수의 퍼지규칙을 이용한 가변유압시스템의 강건제어)

  • 양경춘;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.134-134
    • /
    • 2000
  • A switching control using multiple gains in the fuzzy rule is newly proposed for an abruptly changing hydraulic servo system. The proposed scheme employs fuzzy PID control, where modified input parameters are used, and LVQNN(Learning Vector Quantization Neural Network) as a switching controller (supervisor). Simulation and experimental studies have been carried out to validate and illustrate the proposed controller.

  • PDF

An Improved Bumpless Transfer by Solving the Input Discrepancy Problem (입력 불일치 해소에 의한 개선형 무충돌전환)

  • Kim, Tae-Shin;Yang, Ji-Hyuk;Kwon, Tae-Wan;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.982-987
    • /
    • 2009
  • On the controller switching time, even though on-line/off-line controller outputs are the same, a problem which deteriorates the performance of bumpless transfer can happen in case that any discrepancy between the two controller inputs is transferred directly to the controller output. In this paper, we analyze the cause of that phenomenon in existing research results and propose a new method which improves that problem. In order to solve this problem, the off-line controller is augmented to an anti-windup structure and an improved bumpless transfer method is derived by using the changed input of the off-line controller instead of the plant input. We exemplify the performance of the proposed method by comparing with the performance of the existing method via numerical examples.

A New Unified Method for Anti-windup and Bumpless Transfer (누적방지 무충돌전환을 위한 새로운 통합형 기법)

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.655-660
    • /
    • 2009
  • In many real applications, the discrepancy problem between controller outputs and plant inputs or the abrupt variation problem of controller outputs can occur. These problems have a negative effect on control performance and stability. It is well-known that two phenomena called 'windup' and 'bump' cause these problems. So far these problems have been studied separately in each side of the anti-windup and the bumpless transfer. This paper proposes a new unified method combines the anti-windup and the bumpless transfer method using the linear quadratic minimization and a proper state space model representation for the anti-windup controller. The proposed method has a feature that it takes account of both the anti-windup and the bumpless transfer in one formula. Finally, we exemplify the performance of the proposed method via numerical examples using the controller switching between the anti-windup PID controller and the anti-windup LQ controller.

A Robust Controller Design for Robot Manipulators with Hydraulic Actuator Dynamics (유압구동기를 채용한 로봇 매니플레이터에 대한 강인제어기 설계)

  • Park, Gwang-Seok;Hwang, Dong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.598-600
    • /
    • 1998
  • In this paper, a robust controller is proposed to achieve the accurate tracking for uncertain robot manipulators with hydraulic actuator dynamics. The parameter uncertainty can be quantified by the linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is proposed using the boundary layer technique around the sliding surface. It is shown that the smoothing controller guarantees the uniform ultimate boundedness of the tracking, error. The proposed controller shows good better tracking performance.

  • PDF

Design and Implementation of a Motor Power Change Speed Device for Micro-controller (Micro-controller 방식에 의한 Motor Power 변속장치의 설계와 구현)

  • 김정래
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.163-169
    • /
    • 2003
  • This study was carried out develope a motor power change speed device of motor by used micro- controller. This system was producted a auto-change speed device which switching frequency was 1,000MHz by used a auto- controller. It had a continuous output current such as 5A, 11A, 25A, 35A, 50A. It used a variable voltage from 9V to 18V(Maximum). We designed hardware of and software of micro-controller, we are made up of a auto cut-off function by 3.7V for detected power-loss prevention.

  • PDF

Variable structure control of a magnetic bearing (마그네틱 베어링의 가변구조제어)

  • 이대종;박장환;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.419-422
    • /
    • 1996
  • In this paper, we consider variable structure controller design of a active magnetic bearing(AMB). In particular, we design a switching hyperplane, considering coupling characteristic among each magnet. This method is designed by applying decentralized control method. Controller design consist of two factors that is, one is linear control part to drive state variables to zero asymptotically and the other is a nonlinear controller part to maintain within neighborhood of switching hyperplane. Finally, A control method designed here is checked by simulation, which shows good results.

  • PDF

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

Nonlinear variable structure system control for flexible link robot manipulators (유연성 로봇 매니퓰레이터에 대한 비선형 가변구조제어)

  • 김성태;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.280-284
    • /
    • 1997
  • In this paper, Nonlinear VSS control based on bang-bang control concept is derived under the assumption that the control input is bounded. We try to derive control algorithm which has almost same performance as the time optimal control. We focus this control scheme on the real implementation of DC motor position controller of flexible link, i.e. we obtain the switching curves from the real data of DC motor system operating under the full maximum and minimum applied voltages. State space is separated into several regions and we set different switching surfaces in each region to reduce chattering problem. The efficiency of the proposed controller is compared with PID controller and it is shown that the controller converges fast than PID controller without chattering. The hybrid controller scheme is also proposed not only to control the position of hub but also to reduce the vibration of end tip of flexible link.

  • PDF

A Study of the Digital Phase-shift Resonant Converter to Reduce the conduction Loss and Stress of the Switching Device (스위칭 소자의 전도손실과 스트레스를 저감하기 위한 디지털 위상천이 공진형 컨버터에 관한 연구)

  • Shin, Dong-Ryul;Hwang, Young-Min;Kim, Dong-wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • Due to the development of information communication field, the interest of the SMPS(Switched Mode Power Supply) is increased. The size and weight of SMPS are decided by inductor, capacitor and transformer. Thus, the low loss converter which is operated in high speed switching is required. The resonant FB DC-DC converter is able to operate in high speed switching and apply to high power field because the switching loss is low. In this thesis, it is proposed to control strategy for constant output power of resonant FB DC-DC converter in variable input voltage. The proposed control system is a digital I-PD type control and apply to phase-shift resonant type controller. The output voltage tracks reference without steady state error in variable input voltage. The validity of proposed control strategy is verified from results of simulation and experiment.

Control of a Ball and Beam System using Switching Control Method (스위칭 제어 기법을 이용한 볼-빔 시스템의 제어)

  • Lee, Kyung-Tae;Jeong, Min-Gil;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.72-81
    • /
    • 2017
  • We propose a switching control scheme for the control of a ball and beam system. It was reported in [4] that a ball and beam system is a nonlinear system which has an ill-defined relative degree. So, the traditional control approaches have been mostly either Jacobian-based control or approximate input-output linearized control in nature. In this paper, motivated by [7], we combine these two traditional control approaches and operate each controller via a pre-designed switching logic so that the improved control result can be obtained without any excessive use of control input. Switching algorithm is developed based on both analysis and actual experimental observation. We verify the effectiveness of our proposed controller via actual experimental results.