• Title/Summary/Keyword: Switching conduction

Search Result 410, Processing Time 0.028 seconds

Switching conduction characteristics of PI LB Film in MIM junctions (Polyimide(PI)LB막의 MIM구조 소자내에서의 switching전도특성)

  • ;;Mitsumasa Iwamoto
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.176-183
    • /
    • 1995
  • The present work is concerned with the switching conduction characteristics of PI LB films in metal insulator metal sandwiches. By applying various DC voltage bias to MIM junctions, conduction characteristics of junctions can be changed between the high-voltage low-current(off) condition, the low-voltage high-current (on) condition and the medium(mid) condition. Switching conduction characteristics can be also observed in MIM junctions employing some aromatic compounds as insulators. Switching conduction characteristics is assumed to be owing to the existence of aromatic rings, space charge in films, impurities on metal-insulator interface, and difference in work functions of base and top electrodes metal. To study the conduction process of on, off, and mid conductions, we measured I-V, d$^{2}$V/d I$^{2}$-V characteristics of junctions with several different top electrodes under various temperatures. Small conductance changes of junctions can be measured by observing the second derivative, d$^{2}$V/dI$^{2}$, of I-V curve. A dynamical technique is used to get the second derivatives. That is, a finite modulation of the current is applied to the junctions and the second harmonic of the voltage is detected.

  • PDF

Switching Losses Analysis of the Interleaved ZCT DC-DC Converter with Current Conduction Modes (전류전도모드에 따른 Interleaved ZCT DC-DC Converter의 스위칭 손실 분석)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.80-85
    • /
    • 2015
  • In the issues of interleaved topology which have been in limelight as high power converter, various soft-switching methods are studied to reduce switching losses in high power application. The interleaved ZCT converter has an additional filter inductor to reduce losses of diodes during reverse recovery process. However, additional current conduction modes are occurred by the inductor, we need to analyze switching losses with inductor values on each mode. In this paper, current conduction modes and boundary conditions of interleaved ZCT converter are analyzed. In the conclusion, the minimum of switching losses in converter operation modes is analyzed by calculating switching losses.

Electrical Conduction and Resistance Switching Mechanisms of Ag/ZnO/Ti Structure

  • Nguyen, Trung Do;Pham, Kim Ngoc;Tran, Vinh Cao;TuanNguyen, Duy Anh;Phan, Bach Thang
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.229-233
    • /
    • 2013
  • We investigated electrical conduction and resistance switching behavior of the Ag/ZnO/Ti structures for random access memory devices. These films were prepared on glass substrate by dc sputtering technique at room temperature. The resistance switching follows unipolar switching mode with small switching voltages (0.4 V - 0.6 V). Two electrical conduction mechanisms dominating the LRS and HRS are Ohmic and trap-controlled space charge limited current, respectively. These both conductions are consistent with the filamentary model. Based on the filamentary model, the switching mechanism was also interpreted.

A Control Method to Improve Power Conversion Efficiency of Three-level NPC-Based Dual Active Bridge Converter (Three-Level NPC-Based Dual Active Bridge Converter의 도통손실 절감을 위한 새로운 스위칭 방법)

  • Lee, Jun-Young;Choi, Hyun-Jun;Kim, Ju-Yong;Jun, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.150-158
    • /
    • 2017
  • This study proposes a new pulse-width modulation switching pattern for the low conduction loss of a three-level neutral point clamped (NPC)-based dual-active bridge (DAB) converter. The operational principle for a bidirectional power conversion is a phase-shift modulation. The conventional switching method of the three-level NPC-based DAB converter shows a symmetric switching pattern. This method has a disadvantage of high root-mean-square (RMS) value of the coupling inductor current, which leads to high conduction loss. The proposed switching method shows an asymmetrical pattern, which can reduce the RMS value of the inductor current with lower conduction loss than that of the conventional method. The performance of the proposed asymmetrical switching method is theoretically analyzed and practically verified using simulation and experiment.

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

Comparative Analysis of Power Losses for Three-Level T-Type and NPC PWM Inverters (3-레벨 T-형 및 NPC 인버터의 전력 손실 비교 분석)

  • Alemi, Payam;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • In this paper, an analysis of power losses for the three-level T-type and neutral-point clamped (NPC) PWM inverters is presented, in which the conduction and switching losses of semiconductor devices of the inverters are taken into account. In the inverter operation, the conduction loss depends on the modulation index (MI) and power factor (PF), whereas the switching loss depends on the switching frequency. Power losses for the T-type and NPC inverters are analyzed and calculated at the different operating points of MI, PF and the switching frequency, in which the four different models of semiconductor devices are adopted. In the case of lower MI, the NPC-type is more efficient than the T-type, and vice versa. The validity of the power loss analysis has been verified by the simulation results.

Novel Zero-Current-Switching (BCS) PWM Switch Cell Minimizing Additional Conduction Loss

  • Park, Hang-Seok;Cho, B.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.37-43
    • /
    • 2002
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of dc to dc PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of dc to dc PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5㎾ prototype boost converter operating at 40KHz.

A New High Efficiency Power Factor Correction PWM Rectifier with Reduced Conduction Loss and No Auxiliary Switches (새로운 고효율 역율보상 단상 PWM AC/DC 컨버터)

  • Kim, In-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.209-221
    • /
    • 1997
  • This paper presents a soft switching unity power factor PWM rectifier, which features reduced conduction losses and soft switching with no auxiliary switches. The soft switching are achieved by using a simple commutation circuit with no auxiliary switches, and reduced conduction loses are achieved by employing a single converter, instead of a typical front end diode rectifier followed by a boost rectifier. Furthermore, thanks to good features such as simple PWM control at constant frequency, low switch stress and low VAR rating of commutation circuits, it is suitable for high power applications. The principle of operation is explained in detail, and major characteristics analysis and experimental results of the new converter also included.

  • PDF

Improved Zero-Current-Switching(ZCS) PWM Switch Cell with Minimum Additional Conduction Losses

  • Park, Hang-Seok;Cho, B.H.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC to DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of DC to DB PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype converter operating at 40 kHz.

  • PDF

A Study on the BUCK ZC-ZVS Converter with Reduced Conduction Losses (도통손실을 감소시킨 강압형 영전류-영전압 컨버터에 관한 연구)

  • Lee, Yo-Seop;Lee, Won-Seok;Lee, Seong-Baek
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.686-691
    • /
    • 1999
  • In a switching power supply, the high frequency switching makes the passive components small, but the losses and the stresses of switches are increased by the switching frequency. Therefore, zero crossing technology using resonant is used to improve defect in high switching. In generally, zero crossing switching consists of Zero Current Switching(ZCS) and Zero Voltage Switching(ZVS). This paper proposes A Buck ZC-ZVS Converter with Reduced Conduction Losses. Comparing with a conventional Buck ZC-ZVS Converter, the proposed converter operates with the smaller rated power. This is achieved by changing the auxiliary switch position, which reduces its rating power. Simulation results using Pspice program about test circuit with rated 160W(30V, 5.3A) at 30kHz and experiment result under same condition were described in the paper.

  • PDF