• Title/Summary/Keyword: Switching Speed

Search Result 1,041, Processing Time 0.027 seconds

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Lee, Won-Cheol;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A Study on the Battery Charger for Next Generation High Speed Train (차세대 고속 전철용 Battery Charger 에 관한 연구)

  • Jeong, Han-Jeong;Lee, Won-Cheol;Lee, Sang-Seok;Paik, Jin-Sung;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.321-324
    • /
    • 2008
  • Recently, there is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Among them, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Development of automatic backup systems for turbine speed signal (터빈 속도신호의 자동백업 시스템 개발)

  • Kim, Kwan-Haeng;Kim, Ho-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.844-846
    • /
    • 1999
  • A speed signal of governor, which control the output and speed of a generator, is important because a signal failure can be causing the shutdown of a power plant. thus, it is necessary to introduce switching method with two complementary signal. This paper presents a comparative study of speed signal switching methods. One of the Proposed methods has been tested at a power plant in Pukcheju and the approach described here is expected to be of wide applicability.

  • PDF

The Operational Characteristics of High-speed Interrupter by Fault Types (고장 유형별 고속 인터럽터의 동작 특성)

  • Jeong, In-Sung;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.278-283
    • /
    • 2013
  • With the increasing power demands, size of the fault current in electrical grids is steadily increasing, and it exceeds the breaking capacity of circuit breakers. To effectively cope with these problems, a high-speed interrupter was suggested. The high-speed interrupter provides fault current with a bypass to a fault current limiter in case of accidents and consequently, fault current can be restricted. In this study, behavioral characteristics of high-speed interrupter were analyzed by accident types occurred in a distribution system. When accidents occurred, a and b contact of the high-speed interrupter were turned-off and then, turned-on. Accordingly, fault current flowed to the circuit connected to a current limiting element, and the fault current limiter restricted fault current to within a half-cycle. Nevertheless, the behavior of the high-speed interrupter was slowed down by a switching surge. As a result, fault current was confirmed to be restricted not to within the anticipated half-cycle, but to after a half-cycle. Moreover, the behavioral characteristics of the high-speed interrupter changed not only by accident types, but by behaviors of R, S, and T phases. This was due to the errors in stroke lengths of the high-speed interrupters, which resulted in a slight time discrepancy among three interrupters. In addition, the switching behaviors of the b and a contact were confirmed not to have coincided due to the switching surge; b contact behaved first and a contact followed. because of this, accuracy of stroke length and switching surges through the solenoid suction increases may be necessary to resolve.

Simultaneous Switching Noise Reduction Technique in Multi-Layer Boards using Conductive Dielectric Substrate (전도성 운전기판을 이용한 다층기판에서의 Simultaneous Switching Noise 감소 기법)

  • 김성진;전철규;이해영
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 1999.11a
    • /
    • pp.33-36
    • /
    • 1999
  • In this paper, we proposed a simultaneous switching noise(SSN) reduction technique in muti-layer beards(MLB) for high-speed digital applications and analyzed them using the Finite Difference Time Domain(FDTD) method. The new method by conductive dielectric substrates reduces SSN couplings and resonances, significantly, which cause series malfunctions in the modem high-speed digital applications.

  • PDF

InP JFET Devices for High Speed Switching Application (광대역 교환을 위한 InP JFET소자)

  • 지윤규;김성준;정종민
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.5
    • /
    • pp.370-374
    • /
    • 1991
  • A high performance fully ion-implanted InP JFET was characterized for high speed switching elements. The switch has an insertion loss of 5.5dB with 31.6dB isolation at 1GHz. This device can effectively swithc a byte-multiplexed 2Gb/s signal and an eye-diagram taken at 2Gb/s shows an error-free eye pattern. Therefore, this device can be used as a switching element for high transmission data rate for monolithic integration of optoelectronic circuit in the long-wavelength region.

  • PDF

A Study on the Improvement of the IM Speed Control Characteristics with Load Torque Variation (부하 변동에 대한 유도 전동기의 속도 제어 특성에 관한 연구)

  • 강문호;김남정;유기윤;박귀태;민경일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1075-1083
    • /
    • 1994
  • In this paper, a study on the improvement of the IM speed response against load torque variation is presented. A VSCS(Variable Structure Control System) is proposed which gives the desired robustness against load torque variation using a new kind of time-varing switching plane. In order to eliminate the reaching phase of the states from one switching plane to another during variation, the switching plane is varied continuously. To verify the high dynamic performance of the proposed VSCS, simulation and experimental results are presented.

A Ringing Surge Clamper Type Active Auxiliary Edge-Resonant DC Link Snubber-Assisted Three-Phase Soft-Switching Inverter using IGBT-IPM for AC Servo Driver

  • Yoshitsugu, Junji;Yoshida, Masanobu;Hiraki, Eiji;Inoue, Kenji;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.115-124
    • /
    • 2002
  • This paper presents an active auxiliary edge-resonant DC link snubber with a ringing surge damper and a three-phase voltage source type zero voltage soft-switching inverter with the resonat snubber treated here for the AC servo motor driver applications. The operation of the active auxiliary edge-resonant DC link snubber circuit with PWM voltage is described, together with the practical design method to select its circuit parameters. The three-phase voltage source type soft-switching inverter with a single edge-resonant DC link snubber treated here is evaluated and discussed for the small-scale permanent magnet (PM) type-AC servo motor driver from an experimental point of view. In addition to these, the AC motor stator current and its motor speed response for the proposed three-phase soft-switching inverter employing Intelligent Power Module(IPM) based on IGBTS are compared with those of the conventional three-phase hard-switching inverter using IPM. The practical effectiveness of the three-phase soft-switching inverter-fed permanent magnet type AC motor speed tracking servo driver is proven on the basis of the common mode current in a novel type three-phase soft-switching inverter-fed AC motor side and the conductive noise on the mains terminal interface voltage as compared with those of the conventional three-phase hard-switching inverter-fed permanent magnet type AC servo motor driver for the speed tracking applications.

A PIN Diode Switch with High Isolation and High Switching Speed (높은 격리도와 고속 스위칭의 PIN 다이오드 스위치)

  • Ju Inkwon;Yom In-Bok;Park Jong-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.167-173
    • /
    • 2005
  • The isolation of the series PIN diode switch is restricted by the parallel capacitance of PIN diode and the switch driver circuit limits switching speed of PIN diode switch. To overcome these problems, a high isolation and high switching speed Pin diode switch is proposed adapting the parallel resonant inductance and TTL compatible switch driver circuit. The measurement results of the 3 GHz PM diode switch show 1 GHz frequency band, less than 1.5 dB insertion loss, 65 dB isolation, more than 15 dB return loss and less than 30 ns switching speed. In particular the 3 GHz PIN diode switch using the parallel resonant inductance exhibits the improvement of isolation by 15 dB.

A Hysteresis Current Controlled Resonant C-Dump Converter for Switched Reluctance Motor (스위치드 릴럭턴스 전동기 구동을 위한 히스테리시스 전류 제어형 공진형 C-Dump 컨버터)

  • Yoon, Yong-Ho;Kim, Jae-Moon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.72-78
    • /
    • 2008
  • The speed variation of SRM is fulfilled throughout a transition from chopping control to single pulse operation. (i,e., low speed to high speed operation). It is unsatisfied with performance at all operational regimes. In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on conventional C-dump converter topology and the proposed resonant C-dump converter topology. Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.