• Title/Summary/Keyword: Switching Modulation

Search Result 724, Processing Time 0.022 seconds

Four switch three-phase Z-source rectifier with improved switching characteristics

  • ANVAR, IBADULLAEV;Yoo, Dae-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.301-302
    • /
    • 2014
  • This paper describes four switch three-phase Z-source rectifier with improved switching characteristics. This configuration has some advantages switching loss and optimal drive circuit. The rectifier has buck-boost function by shoot-through state. Also, the rectifier has the advantage of decreasing inrush current in start-up and transient states. In order to reduce harmonics PWM modulation technique with a variable index has been suggested. Four switch three-phase Z-source rectifier with improved switching characteristics can output stable DC voltage at the same time decreasing the system's harmonic current. And also the paper presents an application of DCC method in Z-source rectifier. Principles and dynamics of the system are discussed in detail. After having viewed the results we can confirm that the proposed method is eligible and efficient.

  • PDF

Optimal Selection of Arm Inductance and Switching Modulation for Three-Phase Modular Multilevel Converters in Terms of DC Voltage Utilization, Harmonics and Efficiency

  • Arslan, Ali Osman;Kurtoglu, Mehmet;Eroglu, Fatih;Vural, Ahmet Mete
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.922-933
    • /
    • 2019
  • The arm inductance (AI) of a modular multilevel converter (MMC) affects both the fault and circulating current magnitudes. In addition, it has an impact on the inverter efficiency and harmonic content. In this study, the AI of a three-phase MMC is optimized in a novel way in terms of DC voltage utilization, harmonics and efficiency. This MMC has 10 submodules (SM) per arm and the power circuit topology of the SM is a half-bridge. The optimum AI is adopted and verified in an MMC that has 100 SMs per arm. Then the phase shift (PS) and phase disposition (PD) pulse width modulation (PWM) methods are investigated for better DC voltage utilization, efficiency and harmonics. It is found that similar performances are obtained for both modulation techniques in terms of DC voltage utilization. However, the total harmonic distortion (THD) of the PS-PWM is found to be 0.02%, which is slightly lower than the THD of the PD-PWM at 0.16%. In efficiency calculations, the switching and conduction losses for all of the semiconductor are considered separately and the minimum efficiency of the 100-SM based MMC is found to be 99.62% for the PS-PWM and 99.64% for the PD-PWM with the optimal value of the AI. Simulation results are verified with an experimental prototype of a 6-SM based MMC.

Dynamics of All-Optical Switching in Bacteriorhodopsin and its Application to Optical Computing

  • Singh, C.P.;Roy, Sukhdev
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.317-319
    • /
    • 2002
  • All-optical switching has been demonstrated in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial 8 state absorption. The switching characteristics have been analyzed using the rate equation approach considering all the six intermediate states (B, K, L, M, N and 0) in the bR photocycle. The switching characteristics are shown to be sensitive to life time of the M state, absorption cross-section of the 8 state at probe wavelength ($\sigma$ $\_$Bp/) and peak pump intensity. It has been shown that the probe laser beam can be completely switched off (100 % modulation) by the pump laser beam at relatively low pump powers, for $\sigma$$\_$Bp/ = O. The switching characteristics have been used to design all-optical NOT, OR, AND and the universal NOR and NAND logic gates for optical computing with two pulsed pump laser beams.

  • PDF

Characteristic of Three-Phase Voltage Type Soft-Switching Inverter using the Novel Active Auxiliary Resonant DC Link Snubber (새로운 액티브 보조 공진 DC 링크 스너버를 이용한 3상 전압형 소프트 스위칭 인버터의 특성)

  • Sung, Chi-Ho;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • This paper is Instant space vector PWM(Pulse Width Modulation)power conversion devices in switching power semiconductors from my generation to losses and switching when the voltage surge and current surge of electronic noise(EMI: Electro Magnetic Interference / RFI: Radio Frequency Interference)to effectively minimize the power soft-switching power conversion circuit topologies of auxiliary resonant DC tank for the purpose of high performance realization of the electric power conversion system by the high-speed switching of a semiconductor device(AQRDCT simultaneously : an active auxiliary resonance using auxiliary Quasi-resonant DC tank)DC link snubber switch has adopted a three-phase voltage inverter. AQRDCL proposed in this paper can reduce the effective and current peak stress of the power semiconductors of the auxiliary resonant snubber circuit compared to the conventional active-resonant DC link snubber, it is not necessary to install the clamp switch of the auxiliary resonant DC link, DC the peak current and power loss of the bus line can be reduced.

Speed Control of PMSM using DTC-PWM Approach (DTC-PWM 방식에 의한 PMSM의 속도 제어 기법)

  • Lee, Dong-Hee;Choo, Young-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.268-277
    • /
    • 2009
  • This paper presents an DTC-PWM (Direct Torque Control-Pulse Width Modulation) of PMSM (Permanent Magnet Synchronous Motor). The proposed DTC-PWM method combines a conventional DTC and PWM approach for switching signal generation. The actual torque is estimated by the torque estimator in conventional method, but the switching signal is generated by PWM method according to the switching rules and torque error. A effective voltage vector and zero vector are used to generate the switching signals and asymmetric switching method is applied. A simple calculation of PWM without any complex determination of space vector can assure the constant switching frequency with an constant torque and flux. The proposed torque control scheme for PMSM is verified by experimental results.

Switching conduction characteristics of PI LB Film in MIM junctions (Polyimide(PI)LB막의 MIM구조 소자내에서의 switching전도특성)

  • ;;Mitsumasa Iwamoto
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.176-183
    • /
    • 1995
  • The present work is concerned with the switching conduction characteristics of PI LB films in metal insulator metal sandwiches. By applying various DC voltage bias to MIM junctions, conduction characteristics of junctions can be changed between the high-voltage low-current(off) condition, the low-voltage high-current (on) condition and the medium(mid) condition. Switching conduction characteristics can be also observed in MIM junctions employing some aromatic compounds as insulators. Switching conduction characteristics is assumed to be owing to the existence of aromatic rings, space charge in films, impurities on metal-insulator interface, and difference in work functions of base and top electrodes metal. To study the conduction process of on, off, and mid conductions, we measured I-V, d$^{2}$V/d I$^{2}$-V characteristics of junctions with several different top electrodes under various temperatures. Small conductance changes of junctions can be measured by observing the second derivative, d$^{2}$V/dI$^{2}$, of I-V curve. A dynamical technique is used to get the second derivatives. That is, a finite modulation of the current is applied to the junctions and the second harmonic of the voltage is detected.

  • PDF

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Implementation of Cuckoo Search Optimized Firing Scheme in 5-Level Cascaded H-Bridge Multilevel Inverter for Power Quality Improvement

  • Singla, Deepshikha;Sharma, P.R.
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1458-1466
    • /
    • 2019
  • Multilevel inverters have appeared as a successful and utilitarian solution in many power applications. The prime objective of an inverter is to keep the fundamental component of the output voltage of a multilevel inverter at a preferred value. Equally important is the need to keep the harmonic components in the output voltage within stated harmonic limits. Therefore, the basis of this research is to develop a harmonic minimization function that optimizes the switching angles of cascaded H-bridge multilevel inverter. Due to benefits of the Cuckoo Search (CS) algorithm, it is applied to determine the switching angles, which are further used to generate the switching pattern for firing the H-bridges of multilevel inverter. Simulation results are compared with SPWM based firing scheme. The switching frequency for SPWM firing scheme is taken as 200 Hz since the switching losses are increased when switching frequency is high. To validate the ability of Cuckoo Search optimized firing scheme in minimization of harmonics, experimental results obtained from hardware prototype of Five Level Cascaded H-Bridge Multilevel Inverter equipped with a FPGA controller are presented to verify the simulation results.

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.

Duplex Pulse Frequency Modulation Mode Controlled Series Resonant High Voltage Converter for X-Ray Power Generator

  • Chu Enhui;Ogura Koki;Moisseev Serguei;Okuno Atsushi;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.295-300
    • /
    • 2001
  • A variety of high voltage DC power supplies employing the high frequency inverter are difficult to achieve soft switching considering a quick response and no overshoot response under the wide load variation ranges which are used in medical-use x-ray high voltage generator from 20kV to 150kV in the output voltage and from 0.5mA to 1250mA, respectively. The authors develops soft switching high voltage DC power supply designed for x-ray power generator applications, which uses series resonant inverter circuit topology with a multistage voltage multiplier instead of a conventional high voltage diode rectifier connected to the second-side of a high-voltage transformer with a large turn ratio. A constant on-time dual mode frequency control scheme operating under a principle of zero-current soft switching commutation is described. Introducing the multistage voltage multiplier, the secondary transformer turn-numbers and stray capacitance of high-voltage transformer is effective to be greatly reduced. It is proved that the proposed high-voltage converter topology with dual mode frequency modulation mode control scheme is able to be the transient response and steady-state performance in high-voltage x-ray tube load. The effectiveness of this high voltage converter is evaluated and discussed on the basis of simulation analysis and observed data in experiment.

  • PDF