• Title/Summary/Keyword: Switching Angle Control

Search Result 184, Processing Time 0.026 seconds

A Neuro-Fuzzy Based Torque Ripple Minimization of Switched Reluctance Motors (뉴로퍼지기법에 의한 SRM의 맥동토오크 최소화)

  • 박한웅;원태현;박성준;추영배;김철우;황영문
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.197-199
    • /
    • 1998
  • A neuro-fuzzy based torque profile model of SRM with considerably improved accuracy is obtained using the measured data for training. The inferred torque profiles, which comprise magnetic non-linearities, represent the dynamic model of SRM. Then the reference torque signal with optimized waveform and switching angle are decided to control the torque directly. Hence, the presented scheme controls the torque in an instantaneous basis, allowing powerful torque control with minimum torque ripple even during the transient operation of the motor. Simulation and experimental results demonstrating the effectiveness of the proposed torque control scheme are presented.

  • PDF

A Output Voltage Linearization in Overmodulation Region of the Space Vector PWM (공간벡터 PWM의 과변조 영역에서 출력전압 선형화)

  • Bae, Jang-Ho;Kim, Yuen-Chung;Won, Chung-Yuen;Choi, Jong-Mook;Gi, Sang-Woo;Bae, Gi-Hun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.128-139
    • /
    • 1999
  • This paper proposes a linearization technique for the space vector modulation method, which increases the linear control range of inverter up to the 6-step inverter. This method is based on fourier series expansion of the desired output voltage of the inverter to calculate the compensation angle in continuous switching mode and holding angle in discontinuous switching including the 6-step mode respectively. The approximation equation of these angles are used for compensation of fundamental voltage in overmodulation range. Therefore, it is possible to obtain the linear control and the maximized utilization of PWM inverter output voltage.

  • PDF

A Position Control System of SRM using Digital Hysteresis Controller (디지털 히스테리시스 제어기를 이용한 SRM의 위치제어시스템)

  • 김민회;백원식;김남훈;최경호;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.253-261
    • /
    • 2002
  • This paper presents an implementation of position control system of Switched Reluctance Motor (SRM) using digital hysteresis controller by TMS320F740 DSP. Although SRM possess several advantages including simple structure and high efficiency, but the control thrive system using power semiconductor device is required to drive this motor. The control drive system increases overall system cost. To overcome this problem and increase the application of SRM, it is needed to develope the servo dave system of SRM. So, the position control system of 1 Hp SRM is developed and evacuated by adaptive switching angle control. The position/speed response characteristics and voltage/current waveforms are presented to prove the capability of SRM for a servo drive application. Moreover, digital hysteresis current controller is developed and evaluated by experimental testing for the purpose of system developmental cost reduction.

Double Sliding Surfaces based on a Sliding Mode Control for a Tracking Control of Mobile Robots (이동 로봇의 추종 제어를 위한 이중 슬라이딩 표면에 기반한 슬라이딩 모드 제어)

  • Lee, Jun Ku;Choi, Yoon Ho;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.495-500
    • /
    • 2013
  • This paper proposes a double sliding surfaces based on a sliding mode control for a tracking control of nonholonomic mobile robots in the Cartesian coordinates. In order to remove sliding surface constraints, we design the additional sliding surface for the heading angle with respect to the newly defined coordinates. Then, we define the switching law based on the posture error to combine the designed sliding surface with the previous one. By using the double sliding surfaces and the switching law, we obtain the control law for arbitrary trajectories. It is proved that the position tracking error and the heading direction error asymptotically converge to zero, respectively, with the Lyapunov stability theory. Finally, through computer simulations, we demonstrate the effectiveness of the proposed control system.

Speed Control for Single Phase Induction Motor Using Phase Angle (위상각제어에 의한 단상유도전동기의 속도제어)

  • 임영철;김광헌;최찬학;나석환;정영국;장영학;장학충
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.5
    • /
    • pp.41-50
    • /
    • 1995
  • Single-phase induction motors are widely used in many light duty applications, especially in home and office. many applications which use these motors require adjustable speed control continuously. In general, the speed control of single-phase induction motor is accomplished at a few discrete speeds by using tapped-windings, pole switching or gear. These techniques are inefficient and complicated. In this paper, Torque controller which adjusts a generating torque using phase difference between main winding voltage and auxiliary winding voltage is proposed. The analysis includes the determination of the relationship between the auxiliary winding voltage is proposed. The analysis includes the determination of the relationship between the auxiliary winding voltage phase angle and torque. Simulation results of the torque-speed characteristics using the controlled auxiliary winding supply are shown and discussed. and the drive is tested experimentally to verify the results of the theory by using a dynamometer.

  • PDF

Reduction Harmonics in Double Connected Modified Current Source Inverter by Switching Taps on Auto Transformer (단권변압기 탭 절환 방식에 의한 이중 접속 변형전류형 인버터의 고주파 저감)

  • 이공희;한우용
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 1994
  • An effective method for reducing the harmonics in double connected modified current source inverter[MCSI] by switching taps on auto transformer is presented in this paper. The proposed system operates as like a 24 step MCSI by adding only tap changing auxiliary circuit which consists of several taps and static switching elements to the 12 step multiple inverter, which is double connected three-phase six-step MCSI with an auto transformer. The basic theories of the proposed inverter systems for analyzing the output waveforms are described. And to optimize the effectiveness of the harmonic reduction, the optimum turn ratio and the tap changing control angle of auto transformer are decided by digital simulation and its validity is verified by experiment. Although the construction of the proposed inverter is very simple, it is clarified that the output waveform of the inverter is almost the same as that of the conventional 24 step multiple inverter under the optimum condition.

  • PDF

Dynamic Speed Control of a Unicycle Robot (외바퀴 로봇의 동적 속도 제어)

  • Han, In-Woo;Hwang, Jong-Myung;Han, Seong-Ik;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.

Speed Sensorless Control of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 센서리스 속도제어)

  • Shin, Kyoo-Jae;Kwon, Young-Ahn
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.166-172
    • /
    • 1998
  • Switched reluctance motor(SRM) has the advantages of simple structure, low rotor inertia and high efficiency. However, position sensor is essential in SRM in order to synchronize the phase excitation to the rotor Position. The Position sensors increase the cost of drive system and tend to reduce system reliability. This paper investigates the speed control of sensorless SRM in which the Phase current and change rate are utilized in position decision, and the period of dwell angle is variable for speed control. The proposed system consists of Position decision circuit, speed controller, digital logic commutator, switching angle controller and inverter The performances in the proposed system are verified through the experiment.

  • PDF

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

Development of Autonomous Navigation Robot in Outdoor Road Environments (실외 도로 환경에서의 자율주행 로봇 개발)

  • Roh, Chi-Won;Kang, Yeon-Sik;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.293-299
    • /
    • 2009
  • This paper discusses an autonomous navigation system for urban environments. For the localization of the robot, EKF (Extended Kalman Filter) algorithm is used with odometry, angle sensor, and DGPS (Differential Global Positioning System) measurement. Especially in an urban environment, DGPS is often blocked by buildings and trees and the resulting inaccurate positioning prevents the robot from safe and reliable navigation. In addition to the global information from DGPS, the local information of the curb on the roadway is used to track a route when the global DGPS information is inaccurate. For this purpose, curb detection algorithm is developed and implemented in the developed navigation algorithm. Four different types of navigation strategies are developed and they are switched to adapt to different localization conditions according to the availability of DGPS and the existence of the curbs on the roadway. The experimental results show that the designed switching strategy improves the navigation performance adapting to the environment conditions.