• Title/Summary/Keyword: Switch voltage stress

Search Result 167, Processing Time 0.029 seconds

High Efficiency DC-DC Converter for PDP Power Supply (PDP용 전원 장치를 위한 고효율 DC-DC 컨버터)

  • Kang Won-Suck;Ahn Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1272-1274
    • /
    • 2004
  • Recently the PDP is the most remarkable media for a next generation display device. In this paper, we proposed the PDP dedicated DC-DC converter using a new soft switching method because the PDP has a lot of power dissipation so we need to develope. The proposed converter using one transformer has soft switching and a advantage to lower voltage stress in switch and also is predicted to have high power efficiency. we proposed the principles and theory using the zero voltage switching and verified the validity through a experiment.

  • PDF

A Study on the DC Leakage Current Test for Power Cable of Private Electrical Facilities considering Lightning Arrester (피뢰기를 고려한 자가용 전기설비 인입선로의 직류누설전류시험에 관한 연구)

  • Jeong, Ki-Seok;Gil, Hyoung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.142-147
    • /
    • 2018
  • Private electrical facilities are judged whether it is suitable for the insulation aging condition of their incoming underground cables using DC leakage current test method. In the case where the service point of utility is the secondary side of cut out switch installed in the electric pole, there is a problem that it is difficult to separate the lightning arresters(LA) because of their high position of the pole. Therefore, the field test voltage is applied at value lower than DC 30 kV, which are stated in the inspection guideline. However, this test could reduced the insulation performance of the LA by accelerating the electrical stress of the metal oxide varistor element in the pre-breakdown region. In this study, we analyzed the relationship between the DC test voltage and the leakage current using the non-destructive DC high voltage equipment with leakage current measurement function. The results show that the leakage current increases sharply above the specified test voltage. As a consequence, it could be contributed to improve insulation aging inspection method by selecting the possible test area on the VI characteristic curve of the pre-breakdown area of the LA.

Improvement on Property of Insulation in PT of Epoxy Mold Type (에폭시 몰드형 PT의 절연특성 개선)

  • Song, Jae-Joo;Kim, Sung-Hong;Choi, Myeong-Ho;Lee, Jae;Lim, Sung-Hun;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.67-71
    • /
    • 2001
  • PT of epoxy mold type have tendency to occur dielectric breakdown in high voltage system. These are using for measurement of voltage or protection of system and application voltage is 25.8kV. Therefore, for improving a lots of problems like as partial discharge, we had analyze on the destroyed Epoxy molded type PT and processing of production. As a results, we concluded that the reason of dielectric breakdown was defect of processing and degradation of insulation by electrical stress. In this work, We presented a method of solution in processing of production. which is reduction of the PO which was occurred at the insulation material. so we must many try to remove faults, these problems are mainly to winding methods of 1st coil. the other side, Reformation of 1st coil improved property of PD and we could prove it with experiments.

  • PDF

A Study on the Auxiliary Power Supply for the Railway Vehicle by Using Wide Band Gap Device (Wide Band Gap 소자를 적용한 철도차량용 보조전원장치에 관한 연구)

  • Choi, Yeon-Woo;Lee, Byoung-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.168-173
    • /
    • 2018
  • In this paper, an auxiliary power supply (APS) for railroad cars is proposed. The APS can reduce the number of devices required to supply power through structural modification and operates at a high switching frequency by application of a SiC device. The voltage stress on the device in the proposed circuit can be reduced to less than half of the input voltage of the system; thus, a device with low breakdown voltage can be designed. By adapting a SiC device instead of an IGBT device, the proposed circuit can reduce switching and conduction losses and operate at a high switching frequency, thereby reducing output voltage and inductor current ripples in the proposed circuit. The theoretical analysis results of the proposed APS are verified with a 40 kW computer-based simulation and a 2 kW experiment.

Steady State Analysis and Design of a Resonant Switching Watkins-Johnson DC-DC Converter (Watkins-Johnson 공진형 DC-DC 컨버터의 정상상태 해석과 최적설계)

  • Ahn, Tae-Young
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.113-122
    • /
    • 1999
  • A new resonant switching Watkins-Johnson converter was proposed, which minimizes the switching loss and is well suited for high-frequency operation. The steady-state analyses revealed that the voltage gain of the proposed converter is solely determined by the switching frequency. Consequently, to regulate the output voltage of the converter for variable load current the switching frequency should be varied accordingly. Based on the results of analyses, an optimum design procedure for the resonant component values is proposed, which minimized the voltage stress of power switch while maintaining the desired property of zero-voltage switching. Finally, accuracy of analyses and validity of an optimum design procedure are verified on an experimental resonant switching Watkins-Johnson converter prototype.

  • PDF

A Modified Switched-Diode Topology for Cascaded Multilevel Inverters

  • Karasani, Raghavendra Reddy;Borghate, Vijay B.;Meshram, Prafullachandra M.;Suryawanshi, H.M.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1706-1715
    • /
    • 2016
  • In this paper, a single phase modified switched-diode topology for both symmetrical and asymmetrical cascaded multilevel inverters is presented. It consists of a Modified Switched-Diode Unit (MSDU) and a Twin Source Two Switch Unit (TSTSU) to produce distinct positive voltage levels according to the operating modes. An additional H-bridge synthesizes a voltage waveform, where the voltage levels of either polarity have less Total Harmonic Distortion (THD). Higher-level inverters can be built by cascading MSDUs. A comparative analysis is done with other topologies. The proposed topology results in reductions in the number of power switches, losses, installation area, voltage stress and converter cost. The Nearest Level Control (NLC) technique is employed to generate the gating signals for the power switches. To verify the performance of the proposed structure, simulation results are carried out by a PSIM under both steady state and dynamic conditions. Experimental results are presented to validate the simulation results.

Analysis and Implementation of a New ZVS DC Converter for Medium Power Application

  • Lin, Bor-Ren;Shiau, Tung-Yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1296-1308
    • /
    • 2014
  • This paper presents a new zero voltage switching (ZVS) converter for medium power and high input voltage applications. Three three-level pulse-width modulation (PWM) circuits with the same power switches are adopted to clamp the voltage stress of MOSFETs at $V_{in}/2$ and to achieve load current sharing. Thus, the current stresses and power ratings of transformers and power semiconductors at the secondary side are reduced. The resonant inductance and resonant capacitance are resonant at the transition interval such that active switches are turned on at ZVS within a wide range of input voltage and load condition. The series-connected transformers are adopted in each three-level circuit. Each transformer can work as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer. Thus, no output inductor is needed at the secondary side. Three center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Compared with the conventional parallel three-level converters, the proposed converter has less switch counts. Finally, experiments based on a 1.44kW prototype are provided to verify the operation principle of proposed converter.

High Efficiency and High Power-Factor Power Supply for LED Lighting Equipment (고효율 고역률 LED 조명장치용 전원공급장치)

  • Jeong, Gang-Youl
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.23-34
    • /
    • 2018
  • This paper presents the high efficiency and high power-factor power supply for LED lighting equipment. The proposed power supply is the single-stage power structure consisted of the full-bridge diode rectifier and flyback converter, and thus the power-factor correction and output voltage regulation are performed simultaneously using only one controller IC and one power semiconductor switch. Furthermore, the proposed power supply reduces the voltage stress and switching loss of main switch using the regenerative snubber, and it improves the system efficiency using the synchronous rectifier. The applied synchronous rectifier is the new voltage-driven type and its operation and construction are simple. In this paper, the operation principle of proposed power supply is explained through the operation analyses of its power-factor correction and main power conversion parts and the operation of synchronous rectifier is described, briefly. Also, a design example of the power circuit of 40W-class prototype is shown and the operation characteristics of proposed power supply are validated through the experimental results of the implemented prototype by the designed circuit parameter.

The Analysis of a High Frequency Series Resonant DC-DC Converter (고주파 직렬공진형 DC-DC Converter의 특성 해석)

  • 이윤종;김철진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.934-943
    • /
    • 1990
  • There are no turn-on losses in the series Resonant Converter which operates above the resonance frequency, and the commutation stress on the switched component is low. For a given Series Resonant Converter with specified load resistance, the output voltage is a function of the operation frequency. This paper describes the static and dynamic characteristic analysis of the Series Resonant DC to DC Converter, which is operating above the resonant frequency, with frequency control. For the analysis method, state plane technique is adopted, and the circuit operation is defined from normalized switching frequency, Fsn. Under this condition, circuit performance is analyzed ideally. The validity of the proposed analysis is verified by comparing with experimental results, the stability of the converter is confirmed against small variations around the operating point by conventional frequency domain analysis, and the stress quantity added to switch component is shown.

  • PDF

Design of a Reconfigurable Slot Antenna using Sequentially Voltage-Applied RF MEMS Switches (순차적으로 전압 인가된 RF MEMS스위치를 이용한 재구성 슬롯 안테나의 설계)

  • Shim, Joon-Hwan;Yoon, Dong-Sik;Park, Dong-Kook;Kang, In-Ho;Jung-Chih Chiao
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.429-434
    • /
    • 2004
  • In this paper, we designed a reconfigurable slot antenna using sequentially voltage-applied RF MEMS switches. In order to obtain pull-in voltage and maximum stress of the MEMS switches, the switch structures in accordance with airgap height was analyzed by ANSYS simulation A actuation voltage of MEMS switches can be determined by switch geometry and airgap height between a movable plate and a bottom plate. The designed lengths of MEMS switches were 240 $\mu\textrm{m}$, 320 $\mu\textrm{m}$, 400 $\mu\textrm{m}$, respectively and the airgap was 6$\mu\textrm{m}$. The total size of the designed slot antenna was 10 mm x 10 mm and the slot length and width were 500 $\mu\textrm{m}$ and 200 $\mu\textrm{m}$, respectively. The length and size of the CPW feedline were 5 mm and 30-80-30 $\mu\textrm{m}$, respectively. and then the size of the CPW in the slot was 50-300-150 $\mu\textrm{m}$. The tuning of the resonant frequency of the proposed device is realized by varying the electrical length of the antenna, which is controlled by applying the DC bias voltages to the RF MEMS switches. The designed slot antenna has been simulated, fabricated and measured.