DOI QR코드

DOI QR Code

고효율 고역률 LED 조명장치용 전원공급장치

High Efficiency and High Power-Factor Power Supply for LED Lighting Equipment

  • 정강률 (순천향대학교 전자정보공학과)
  • Jeong, Gang-Youl (Dept. of Electronic Information Engineering, Soonchunhyang University)
  • 투고 : 2018.08.27
  • 심사 : 2018.09.21
  • 발행 : 2018.11.30

초록

본 논문에서는 고효율 고역률 LED 조명장치용 전원공급장치를 제안한다. 제안한 전원공급장치는 풀브리지 다이오드 정류기와 플라이백 컨버터로 구성된 단일단 전력구조이며, 이에 따라 하나의 제어기 IC와 하나의 전력반도체스위치만을 사용하여 역률개선과 출력전압조정을 동시에 수행한다. 또한 제안한 전원공급장치는 회생스너버를 이용하여 주스위치의 전압스트레스와 스위칭손실을 감소시키며, 동기정류기를 이용하여 시스템 효율을 향상한다. 적용된 동기정류기는 새로운 전압구동형이며 동작과 구성이 간단하다. 본 논문에서는 역률개선부와 주전력변환부의 동작분석을 통하여 제안한 전원공급장치의 동작원리를 설명하고 동기정류기의 동작에 관하여 간략하게 설명한다. 또한 40W급 프로토타입 전력회로의 설계예시를 제시하며, 설계된 회로파라미터들에 의해 제작된 프로토타입의 실험 결과를 통하여 제안한 전원공급장치의 동작특성을 입증한다.

This paper presents the high efficiency and high power-factor power supply for LED lighting equipment. The proposed power supply is the single-stage power structure consisted of the full-bridge diode rectifier and flyback converter, and thus the power-factor correction and output voltage regulation are performed simultaneously using only one controller IC and one power semiconductor switch. Furthermore, the proposed power supply reduces the voltage stress and switching loss of main switch using the regenerative snubber, and it improves the system efficiency using the synchronous rectifier. The applied synchronous rectifier is the new voltage-driven type and its operation and construction are simple. In this paper, the operation principle of proposed power supply is explained through the operation analyses of its power-factor correction and main power conversion parts and the operation of synchronous rectifier is described, briefly. Also, a design example of the power circuit of 40W-class prototype is shown and the operation characteristics of proposed power supply are validated through the experimental results of the implemented prototype by the designed circuit parameter.

키워드

과제정보

연구 과제 주관 기관 : 순천향대학교

참고문헌

  1. C. Branas, F. J. Azcondo, and J. M. Alonso, "Solid-state lighting: A system review", IEEE Ind. Electron. Mag., Vol. 7, No. 4, pp. 6-14, Dec. 2013. https://doi.org/10.1109/MIE.2013.2280038
  2. U. S. Department of Energy, "Energy savings forecast of solid-state lighting in general illumination applications", Washington D.C., USA, pp. 20-26, Sep. 2016.
  3. M. S. Shur and A. Zukauskas, "Solid-State Lighting: Toward Superior Illumination", Proceedings of the IEEE, Vol. 93, No. 10, pp. 1691-1703, Oct. 2005.
  4. M. H. Crawford, "LEDs for Solid-State Lighting: Performance and Recent Advances", IEEE J. Sel. Topics in Quantum Electron., Vol. 15, No. 4, pp. 1028-1040, July/Aug. 2009. https://doi.org/10.1109/JSTQE.2009.2013476
  5. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hhn, "High-Power and High-Efficiency InGaN -Based Light Emitters", IEEE Trans. Electron Devices, Vol. 57, No. 1, pp. 79-87, Jan. 2010. https://doi.org/10.1109/TED.2009.2035538
  6. D. G. Lamar, J. S. Zuniga, A. R. Alonso, M. R. Gonzalez, and M. M. H. Alvarez, "A Very Simple Control Strategy for Power Factor Correctors Driving High-Brightness LEDs", IEEE Trans. Power Electronics, Vol. 24, No. 8, pp. 2032-2042, Aug. 2009. https://doi.org/10.1109/TPEL.2009.2020900
  7. H. Ma, J. S. Lai, Q. Feng, W. Yu, C. Zheng, and Z. Zhao, "A Novel Valley-Fill SEPICDerived Power Supply Without Electrolytic Capacitor for LED Lighting Application", IEEE Trans. Power Electronics, Vol. 27, No. 6, pp. 3057-3071, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2174446
  8. W. Chen and S. Y. Ron Hui, "Elimination of an Electrolytic Capacitor in AC/DC Light-Emitting Diode (LED) Driver With High Input Power Factor and Constant Output Current", IEEE Trans. Power Electronics, Vol. 27, No. 3, pp. 1598-1607, Mar. 2012. https://doi.org/10.1109/TPEL.2010.2103959
  9. J. Shao, "Single Stage Offline LED Driver", Applied Power Electronics Conference and Exposition (APEC) 2009, pp. 582-586, Feb. 2009.
  10. D. Gacio, J. M. Alonso, A. J. Calleja, J. Garcia, and M. Rico-Secades, "A Universal-Input Single- Stage High-Power-Factor Power Supply for HBLEDs Based on Integrated Buck-Flyback Converter", IEEE Trans. Industrial Electronics, Vol. 58, No. 2, pp. 589-599, Feb. 2011. https://doi.org/10.1109/TIE.2010.2046578
  11. Y. C. Li and C. L. Chen, "A Novel Single-Stage High-Power-Factor AC-to-DC LED Driving Circuit With Leakage Inductance Energy Recycling", IEEE Trans. Industrial Electronics, Vol. 59, No. 2, pp. 793-802, Feb. 2012. https://doi.org/10.1109/TIE.2011.2151817
  12. D. G. Lamar, M. Arias, A. Rodriguez, A. Fernandez, M. M. Hernando, and J. Sebastian, "Design-Oriented Analysis and Performance Evaluation of a Low-Cost High-Brightness LED Driver Based on Flyback Power Factor Corrector", IEEE Trans. Industrial Electronics, Vol. 60, No. 7, pp. 793-802, Jul. 2013. https://doi.org/10.1109/TED.2012.2235070
  13. M. T. Zhang, M. M. Jovanović, and F. C. Lee, "Design consideration and performance evaluations of synchronous rectification in flyback converter", IEEE Trans. on Power Electronics, Vol. 13, No. 3, pp. 538-846, May 1998.
  14. J. M. Zhang, X.. G. Xie, D. Z. Jiao, and Z. Qian, "A high efficiency adapter with novel current driven synchronous rectifier", Telecommunications Energy Conference, INTELEC, Vol. 25 pp. 205-210, Oct. 2003.
  15. F. Librizzi, "AC/DC Flyback Converter with Synchronous Rectification", Power Semiconductor Devices and ICs, Proceedings, ISPSD, Vol. 16, pp. 63-66, May 2004.
  16. F. Librizzi and F. Lentini, "STSR30 implements synchronous rectification in flyback adaptors", STMicroelectronics application note AN1804, pp. 1-3, 2003.