• Title/Summary/Keyword: Switch design

Search Result 976, Processing Time 0.031 seconds

Performance Evaluation of Multiservice Network Switch for Dynamic Constant-and Adaptive-rate Services (동적인 고정 및 가변 전송을 서비스를 위한 다중 서비스 네트워크 스위치의 성능 분석)

  • Lee, Tae-Jin
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.399-406
    • /
    • 2002
  • We consider design of multiservice network link, in which connections of constant- and adaptive-rate services arrive and leave dynamically. We propose performance analysis and design methods of these dynamic multiservice networks. A multiservice network link is modeled by a Markov chain, and data rates for adaptive-rate connections are derived using QBD (Quasi-Birth-Death) processes and matrix-geometric equations. We estimate average number of adaptive-rate connections, average data rate and average connection delay. The performance of constant-rate connections is determined from the blocking probability of the connections. Based on the performance of constant-and adaptive- rate connections, we propose a design methods of a network link to satisfy performance requirements of constant- and adaptive-rate connections (data rates, delay, blocking probability). Our methods can be used for the analysis and design of network switch supporting dynamic data and voice (video) traffic simultaneously.

The Design of Interleaved Bi-directional DC-DC Converter for Fuel Cell and Battery Hybrid System (연료전지·이차전지 하이브리드 시스템을 위한 인터리빙 양방향 DC-DC 컨버터 설계)

  • Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;Lee, Sang-Cheol;Lee, Dong-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Fuel cell power system is one of the most promising energy source for the alternative energy because it has unique advantages such as high energy density, no power drop during operation, and feasible to make compact size. However, due to very low response time, fuel cell is difficult to correspond to drastic load changes and start-up operation. For solving these problem, fuel cell power system must include energy storage device such as Li-Poly battery or super capacitor. Therefore, bi-directional DC-DC converter must be required for this storage device and fuel cell-PCS control. This paper presents a design and modeling of the bi-directional DC/DC converter. Firstly, we present modeling the boost and buck mode of the bi-directional converter through both PWM switch model and state space averaging technique. Secondly, in order to minimize output ripple and transient response overshoot, we have two identical DC-DC converters interleaved and adopt two-loop voltage-current controller. The proposed bi-directional DC-DC converter's modeling method and control design have been verified with computer simulation and experimentation.

Design of pHEMT channel structure for single-pole-double-throw MMIC switches (SPDT 단일고주파집적회로 스위치용 pHEMT 채널구조 설계)

  • Mun Jae Kyoung;Lim Jong Won;Jang Woo Jin;Ji, Hong Gu;Ahn Ho Kyun;Kim Hae Cheon;Park Chong Ook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2005
  • This paper presents a channel structure for promising high performance pseudomorphic high electron mobility transistor(pHEMT) switching device for design and fabricating of microwave control circuits, such as switches, phase shifters, attenuators, limiters, for application in personal mobile communication systems. Using the designed epitaxial channel layer structure and ETRI's $0.5\mu$m pHEMT switch process, single pole double throw (SPDT) Tx/Rx monolithic microwave integrated circuit (MMIC) switch was fabricated for 2.4 GHz and 5 GHz band wireless local area network (WLAN) systems. The SPDT switch exhibits a low insertion loss of 0.849 dB, high isolation of 32.638 dB, return loss of 11.006 dB, power transfer capability of 25dBm, and 3rd order intercept point of 42dBm at frequency of 5.8GHz and control voltage of 0/-3V These performances are enough for an application to 5 GHz band WLAN systems.

Interpretation of Quality Statistics Using Sampling Error (샘플링오차에 의한 품질통계 모형의 해석)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.205-210
    • /
    • 2008
  • The research interprets the principles of sampling error design for quality statistics models such as hypothesis test, interval estimation, control charts and acceptance sampling. Introducing the proper discussions of the design of significance level according to the use of hypothesis test, then it presents two methods to interpret significance by Neyman-Pearson and Fisher. Second point of the study proposes the design of confidence level for interval estimation by Bayesian confidence set, frequentist confidential set and fiducial interval. Third, the content also indicates the design of type I error and type II error considering both productivity and customer claim for control chart. Finally, the study reflects the design of producer's risk with operating charistictics curve, screening and switch rules for the purpose of purchasing and subcontraction.

Mechanism Design of Cube Satellite for Multi-deployable Structures and Autonomous System Operation after Launcher Separation (복수구조 전개 및 발사체 분리직후 시스템 자동운용을 위한 큐브위성의 메커니즘 설계)

  • Lee, Myoung-Jae;Jung, Hyun-Mo;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.20-25
    • /
    • 2013
  • In case of cube satellite, it is difficult to realize the same performance as commercial satellite due to its highly restricted unit accommodation space. To maximize the performance of the cube satellite, design concept considering the multi-function of satellite is required. In this paper, mechanism design of cube satellite which is applicable for the holding and release of multi-deployable structures has been proposed and investigated. In addition, a switch mechanism design for the autonomous system operation just after the cube satellite separation from P-POD has also been proposed. The effectiveness of the mechanism design for holding and release of multi-deployable structures has been demonstrated by EM test of the holding and release mechanism.

Advanced Interchangeable Dynamic Simulation Model for the Optimal Design of a Fuel Cell Power Conditioning System

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.561-570
    • /
    • 2010
  • This paper presents an advanced dynamic simulation model of a proton exchange membrane fuel cell for the optimal design of a fuel cell power conditioning system (FC-PCS). For the development of fuel cell models, the dynamic characteristics of the fuel cell are considered, including its static characteristics. Then, software fuel cell simulation is realized using Matlab-Simulink. Specifically, the design consideration of PCS (i.e., power semiconductor switch, capacitor, and inductor) is discussed by comparatively analyzing the developed simulator and ideal DC source. In addition, a cosimulation between the fuel cell model and PCS realized using the PSIM software is performed with the help of the SimCoupler module. Detailed analysis and informative simulation results are provided for the optimal design of fuel cell PCS.

Structural Design of Mid-Story SI Tall-building with RC Frame Placed on Steel Structure

  • Isobe, Tomonobu;Aono, Hideshi
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper we introduce Shinagawa HEART, located in Shinagawa district, Tokyo. It is a mixed-use building with residences on the upper floors, offices on the lower floors, and commercial uses on the first and second floors, and is intended to meet the various needs of a building on the border between residential and commercial areas. The upper floors of the building are made of reinforced concrete, while the middle and lower floors are made of steel with CFT columns. First, an overview of the structural plan of the building is presented. Next, the adoption of the middle layer seismic isolation and the switch between the lower steel structure and the upper reinforced concrete structure, which are the features of this building, are explained. Finally, the construction method adopted to achieve the design performance is explained.

A Study on Wideband LC Oscillator Using Fat Dipole Antenna (팻 다이폴 안테나를 이용한 광대역 LC 오실레이터에 관한 연구)

  • Lee, Sang-Heun;Yoon, Young-Joong;Heo, Hoon;Nam, Sang-Hoon;Lee, Woo-Sang;Choi, Do-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1185-1192
    • /
    • 2008
  • In this paper, a wideband LC oscillator which is composed of a high voltage switch and a fat dipole antenna was designed and radiation characteristics are analyzed. A Marx generator was used as a high voltage pulse generator of the proposed wideband LC oscillator and $90^{\circ}$ corner reflector was used to obtain high directivity. According to simulated and measured results, 3 dB bandwidth of high voltage switch without fat dipole based on the received power is about 9%(${\lambda}_1=0.7\;m$) and bandwidth Is about 30%(${\lambda}_2=1\;m$) by using the LC oscillator containing high voltage switch and fat dipole. Consequently, fat dipole affects not only radiating power but also operating frequency and bandwidth of the LC oscillator. This study will be useful to determine operating frequency and radiating power when we design LC oscillator which uses a high voltage switch and a fat dipole.

Design and Implementation of Economical Smart Wall Switch with IEEE 802.11b/g/n

  • Myeong-Chul Park;Hyoun-Chul Choi;Cha-Hun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.103-109
    • /
    • 2023
  • In this paper, we propose a smart wall switch based on IEEE 802.11b/g/n standard 2.4GHz band communication. As the 4th industrial era evolves, smart home solution development is actively underway, and application cases for smart wall switches are increasing. Most of the Chinese products that preoccupy the market through price competitiveness use Bluetooth and Zigbee communication switches. However, while ZigBee communication is low power, communication speed is slower than Bluetooth and network configuration through a separate hub is additionally required. The Bluetooth method has problems in that the communication range and speed are lower than Wi-Fi communication, the communication standby time is relatively long, and security is weak. In this study, an IEEE 802.11b/g/n smart wall switch applied with Wi-Fi communication technology was developed. In addition, through the two-wire structure, it is designed so that no additional cost is incurred through the construction of a separate neutral line in the building. The result of the study is more than 30% cheaper than the existing wall switch, so it is judged that it will be able to preoccupy the market not only in terms of technological competitiveness but also price competitiveness.

Reliability Improvement of an Auto Transfer Switch (자동 전환 개폐기의 신뢰성 향상에 관한 연구)

  • Cho, Hyung Jun;Baek, Jung-Ho;Yeu, Bong-Ki;Kang, Tae-Seok;Kim, Kil-Sou;Yang, Il Young;Yoo, Hwan Hee;Yu, Sang Woo;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.162-170
    • /
    • 2016
  • Purpose: The purpose of this study was to analyze the failure modes of an auto transfer switch (ATS), determine the most common failure mechanisms, and iterate the design to improve reliability. Methods: We carried out failure mode and effect analysis (FMEA) to determine the failure modes and mechanisms. We identified the parts or modules that required improvement via two-stage quality function deployment based on FMEA, and improvements to reliability were monitored using the Gomperz growth model. Results: The main failure modes of the ATS were damage to, and deformation of, the stator / movable element due to repetitive movements. Five iterations of design modification were carried out, and the mean time to failure (MTTF) increased to 14,539 cycles, corresponding to 85% of the target MTTF. The Gompertz growth model indicates that the 10th iteration of design modification is expected to achieve the target MTTF. Conclusion: We improved the reliability of mechanical parts via failure mode analysis, and characterized the iterative improvements in the MTTF using the Gompertz growth model.