• Title/Summary/Keyword: Switch Mode

Search Result 536, Processing Time 0.033 seconds

Self-timed Current-mode Logic Family having Low-leakage Current for Low-power SoCs (저 전력 SoC를 위한 저 누설전류 특성을 갖는 Self-Timed Current-Mode Logic Family)

  • Song, Jin-Seok;Kong, Jeong-Taek;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.37-43
    • /
    • 2008
  • This paper introduces a high-speed low-power self-timed current-mode logic (STCML) that reduces both dynamic and leakage power dissipation. STCML significantly reduces the leakage portion of the power consumption using a pulse-mode control for shorting the virtual ground node. The proposed logic style also minimizes the dynamic portion of the power consumption due to short-circuit current by employing an enhanced self-timing buffer. Comparison results using a 80-nm CMOS technology show that STCML achieves 26 times reduction on leakage power consumption and 27% reduction on dynamic power consumption as compared to the conventional current-mode logic. They also indicate that up to 59% reduction on leakage power consumption compared to differential cascode voltage switch logic (DCVS).

Implementation of a Shared Buffer ATM Switch Embedded Scalable Pipelined Buffer Memory (가변형 파이프라인방식 메모리를 내장한 공유버퍼 ATM 스위치의 구현)

  • 정갑중
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.703-717
    • /
    • 2002
  • This paper illustrates the implementation of a scalable shared buffer asynchronous transfer mode (ATM) switch. The designed shared buffer ATM switch has a shared buffet of a pipelined memory which has the access time of 4 ns. The high-speed buffer access time supports a possibility of the implementation of a shared buffer ATM switch which has a large switching capacity. The designed switch architecture provides flexible switching performance and port size scalability with the independence of queue address control from buffer memory control. The switch size and the buffer size of the designed ATM switch can be reconfigured without serious circuit redesign. The designed prototype chip has a shared buffer of 128-cell and 4 ${\times}$ 4 switch size. It is integrated in 0.6um, double-metal, and single-poly CMOS technology. It has 80MHz operating frequency and supports 640Mbps per port.

Fault Detection and Compensation Scheme of Switch Open-fault in VSI for Two-phase Excitation Drive (2상 여자 구동용 전압형 인버터의 스위치 개방고장 검출 및 보상 기법)

  • Lee, Kui-Jun;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.74-80
    • /
    • 2007
  • This paper proposes the novel open-fault detection/isolation scheme of inverter switch in two-phase excited VSI. This scheme identify open-fault using voltage sensor at lower switches of each phase according to the operating mode. It has benefit of simple implementation, fast detection and robustness in the load so that stab of the system is improved. Also, at faulty mode, it minimizes faulty effect and makes possible continuous operation through the reconfiguration procedure applying four-switch operation. The validity of proposed fault detection scheme is verified by experimental results.

THE CLAMP MODE FORWARD ZERO-VOLTAGE-SWITCHING MULTI-RESONANT-CONVERTER (CLAMP MODE에서 동작하는 ZVS-MRC FORWARD 콘버어터에 관한 연구)

  • Kim, Hee-Jun;Simun, Misri
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.210-213
    • /
    • 1991
  • The clamp mode Zero-Volatge-Switched Multi-Resonant-Converter(ZVS-MRC) is proposed. In the converter, the performance of the conventional ZVS-MRC is improved by clamping the drain-to-source voltage of the power switch using a soft switching nondissipative active clamp network. The analysis for each stage of the converter operation modes is presented and is verified by experiments.

  • PDF

All-optical Internodal Switching in Two-mode Waveguide (이중모드 광섬유내에서의 전 광(All-optical) 모드 변환 스위칭)

  • 박희갑
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.119-122
    • /
    • 1989
  • An intermodal switch based on optically-induced (through optical Kerr effect) periodic coupling in a two-mode waveguide is described and demonstrated. A high power pump beam injected into the two modes of the waveguide produced a periodic modulation of the refractive index profile with a period of modal beat length. this causes an intermodal coupling of the prove beam. The operating principle was successfully demonstrated in an elliptical core two-mode fiber with a counter-propagating pump-probe scheme.

  • PDF

Harmonic Reduction in Three-Phase Boost Converter with Six Harmonic Injected PWM (6고조파 주입 PWM을 이용한 3상 승압형 컨버터 고조파저감)

  • 이정훈;김재문;안정준;이정호;원충연;정동효
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.327-332
    • /
    • 1999
  • In this paper, six harmonic injection PWM method for reducing total harmonic distortion in single switch three phase discontinuous conduction mode boost converter is presented. In the proposed method, periodic six harmonic voltage is injected in the control circuit to vary the duty ratio of the converter switch within a line cycle so that the fifth order harmonic of the input current is reduced. Experimental results are verified by converter operating at 400V/6kW with three phase 140V~220V input.

  • PDF

IGBT gate drive circuit using snubber energy (스너버 에너지를 이용한 IGBT 구동 회로)

  • Kim, Sung-Chul;Jeon, Seong-Jeub
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2112-2114
    • /
    • 1998
  • A gate driver suitable for forced switch-mode power converters such as UPS and motor drive system is presented. The proposed gate driver uses regenerated snubber power and requires no separate power supply. This does not impose any additional complexity on the main switch. Experimental results show that the proposed circuit is valid.

  • PDF

Photovoltaic Micro Converter Operated in Boundary Conduction Mode Interfaced with DC Distribution System

  • Seo, Gab-Su;Shin, Jong-Won;Cho, Bo-Hyung;Lee, Kyu-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.44-45
    • /
    • 2011
  • Research on photovoltaic (PV) generation is taking a lot of attention due to its infinity and environment-friendliness with decrease of price per PV cell. While central inverters connect group of PV modules to utility grid in which maximum power point tracking (MPPT) for each module is difficult, micro inverter is attached on each module so that MPPT for individual modules can be easily achieved. Moreover, energy generation and consumption efficiency can be much improved by employing direct current (DC) distribution system. In this paper, a digitally controlled PV micro converter interfacing PV to DC distribution system is proposed. Boundary conduction mode (BCM) is utilized to achieve zero voltage switching (ZVS) of active switch and eliminate reverse recovery problem of passive switch. A 120W prototype boost PV micro converter is implemented to verify the feasibility and experimental results show higher than 98% efficiency at peak power and 97.29% of European efficiency.

  • PDF

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.