• Title/Summary/Keyword: Swirl velocity

Search Result 319, Processing Time 0.02 seconds

A Study on the Distribution of Droplet Velocity and Diameter in a High-Pressure Swirl Spray (와류형 고압 분무의 속도 및 입경분포에 관한 연구)

  • Choi, Dong-Seok;Ryu, Kyung-Hoon;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1310-1319
    • /
    • 1999
  • High-pressure swirl injectors have usually been employed in Gasoline direct injection engines due to their spray characteristics and the feasibility of their control. Thus the microscopic characteristics of high-pressure swirl spray were investigated by PDA. The correlation between axial and radial velocities and the correlation between droplet size and axial velocity were examined with different axial and radial positions. Two dimensional droplet velocity and its number distribution with size-classified droplets were illustrated. The mean droplet velocity and its SMD were also analyzed at the center of spray, the position having maximum mean axial velocity, and the spray periphery using time dividing method. Finally, the structure of high-pressure swirl spray was presented with the size distribution and velocity profile of droplets.

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Vector Fields and Mean Velocities - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 벡터장 및 평균속도에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.25-31
    • /
    • 2000
  • This paper represents the vector fields and three dimensional mean velocities in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. This experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component is focused in the narrow slits distributed radially on the edge of a cone type swirl burner, for that reason, there is some entrainment of ambient air in the outer region of the burner and the rotational flow can be shown in the inner region of the burner because mean velocity W is distributed about twice as large as mean velocity V due to inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the mean velocities are largely distributed near the outer region of burner within $X/R{\fallingdotseq}1.5$, hence, the turbulent characteristics are anticipated to be distributed largely in the center of this region due to the large inclination of mean velocity and swirl effect.

  • PDF

Effect of the Swirler Angle and Aspect Ratio of Nozzle on the Mean Velocity and SMD of Twin Sprays (노즐의 스월러각과 형상비가 이중분무의 평균속도와 입경의 크기에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Choi, Gyoung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1459-1466
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single and twin spray. The characteristics of sprays have been investigated by measuring the spray angle, droplet size and velocity. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber, but for the twin spray, the axial velocity and SMD were not influenced significantly by the changing the aspect ratio of swirl chamber. The effect of swirler angle on the spray characteristics was greater than the aspect ratio of swirl chamber for single spray. The nozzle pitch was one of the important factors affecting the spray characteristics of twin spray.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향)

  • Cho, Siehyung;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

In-Cylinder Flow Characteristics of a Lean Burn Engine under Steady Conditions for Different Port Shapes (포트형상에 따른 정상상태 조건하에서의 희박엔진 연소실내의 유동특성)

  • 박상봉;이은현;유정열;이준식;최해천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.26-33
    • /
    • 1998
  • An experimental study has been conducted for the three-dimensional in-cylinder swirl flow under steady conditions. Velocity fields are measured by using an LDV at various valve lifts. Effects of geometry of inlet ports on swirl flows are investigated for standard and helical ports. Swirl distributions evaluated from velocity measurements are compared with those obtained from an impulse torque swirl meter. Results show that the helical port generates more intensive swirl than the standard one but it causes red- uction in air flow coefficient. At the lower valve lift, no significant difference is observ- ed in non-dimensional swirl values between two ports because of limited pre-swirl effect, while it becomes significant as the valve lift increases.

  • PDF

Design and Simulation of Very Low Head Axial Hydraulic Turbine with Variation of Swirl Velocity Criterion

  • Muis, Abdul;Sutikno, Priyono
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.68-79
    • /
    • 2014
  • The type of turbine developed is based on the very low head of water potential source for the electric power production. The area of research is focused for the axial water turbine that can be applied at the simple site open channel with has a very low cost and environmental impact compared to the conventional hydro installation. High efficiency of axial turbine which applied to the very low potential head will made this type of turbine can be used at wider potential site. Existing irrigation weir and river area will be the perfect site for this turbine. This paper will compare the effects of the variation of swirl velocity criterion during the design of the blade of guide vane and rotor of the turbine. Effects of the swirl velocity criterion is wider known as a vortex conditions (free vortex, force vortex and swirl velocity constant), and the free vortex is the very popular condition that applied by most of turbine designer, therefore will be interesting to do a comparison against other criterion. ANSYS Fluent will be used for simulation and to determine the predictive performance obtained by each of design criteria.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

Swirl ratio effects on tornado vortices in relation to the Fujita scale

  • Hangan, H.;Kim, J.D.
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.291-302
    • /
    • 2008
  • Three-dimensional engineering simulations of momentum-driven tornado-like vortices are conducted to investigate the flow dynamics dependency on swirl ratio and the possible relation with real tornado Fujita scales. Numerical results are benchmarked against the laboratory experimental results of Baker (1981) for a fixed swirl ratio: S = 0.28. The simulations are then extended for higher swirl ratios up to S = 2 and the variation of the velocity and pressure flow fields are observed. The flow evolves from the formation of a laminar vortex at low swirl ratio to turbulent vortex breakdown, followed by the vortex touch down at higher swirls. The high swirl ratios results are further matched with full scale data from the Spencer, South Dakota F4 tornado of May 30, 1998 (Sarkar, et al. 2005) and approximate velocity and length scales are determined.

In-Cylinder Compression Flow Characteristics of Helical Port Engines with Wide Valve Angle (나선형 포트를 적용한 광각엔진에서 실린더 내 압축 유동 특성)

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • This paper is the second of 2 companion papers which investigate in-cylinder swirl generation characteristics in helical port engine with wide valve angle. Two wide valve-angle engines, which are same ones and have slightly different rig swirl number, were used to compare the characteristics of cylinder-flow. One intake port is deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field during intake stroke. The results show that the intake flow component passing through valve area near the cylinder wall is not negligible in helical port engine with wide valve angle contrary to conventional one. The effect of this velocity component on in-cylinder increases as the swirl ratio rises and compression process progresses. Consequently, this component destroys in-cylinder swirl flow completely during compression resulting in no actual swirl at the end stage of compression.