• Title/Summary/Keyword: Swirl injector

Search Result 274, Processing Time 0.023 seconds

Computational Evaluation of Spray Characteristics in Swirl Coaxial Injector with Varying Recess Length

  • Kishore, Girishankar;Bae, Seong Hun;Kim, Jeong Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.704-708
    • /
    • 2017
  • A spray characteristics is carried out in a numerical simulation of swirl coaxial injector. The water and nitrogen are the oxidizer and fuel is used in cold flow condition. The simulation is carried out in 3d model with varying recess length. Reynolds stress turbulence and volume of fluid model were chosen to perform the simulation. The spray characteristics have been investigated as well as the influence of the inlet swirl strength of the internal flow. Effect of recess length is studied for the axial and radial velocity decreased with a reduced length of inner injector due to the decline vortex intensity.

  • PDF

A numerical study on the characteristics of internal flows in a gasoline direct swirl injector (직접분사식 가솔린 선회 분사기에서의 내부 유동특성에 관한 수치 해석)

  • Bae, S.H.;Moon, S.Y.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2001
  • The internal flow characteristics of a gasoline direct injector have been studied to improve fuel economy and reduce exhaust emissions. Computational Fluid Dynamics (CFD) is used to examine the internal flow of the GDI with the purpose of designing the optimum geometry of the injector. This study tests orifice length, cone angle, swirl angle, orifice diameter and needle lift. The results show that optimum sizes of the orifice length, cone angle, swirl angle, orifice diameter and needle lift are 0.8mm, $140^{\circ},\;120^{\circ},\;80mm\;and\;70{\mu}m$, respectively. The size of the lift does not affect the formation of the air core signficantly near the tip of the needle compared to the ball-type needle. The vena contracta phenomenon near the orifice inlet can be released by smoothing the edge.

  • PDF

Dynamic Characteristics Simulation for a Simplex Swirl Injector (스월 인젝터의 동특성에 대한 수치해석 연구)

  • 박홍복
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.67-75
    • /
    • 2006
  • A fully nonlinear model accounting for swirling effect has been applied in analyzing the dynamic response for a classical swirl injector. The current work applied highly accurate Boundary Element Methods (BEMs) in assessing its static and dynamic characteristics. On the basis of moving surface treatment method and surface instability study, which are obtained from the previous static characteristics analysis in pressure-swirl injectors, this work was expanded for analyzing the dynamics of a classical swirl injector. The dynamic response through injector components for disturbed inflow condition was investigated. The modified code was validated from comparison with the theoretical result for a typical swirl injector. Clearly the simulated result shows the interesting characteristics of swirl injectors to provide either amplification or damping of the input disturbance through each component. These results give promise in applying the current model to nonlinear dynamic characteristics of swirl injectors.

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

Effect of Backhole on Spray Characteristics of Swirl Injectors in Liquid Propellants Rocket Engine (액체 추진제용 로켓 엔진 스월 인젝터의 백홀로 인한 분무 특성 연구)

  • 황성하;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-35
    • /
    • 2003
  • "Backhole" is a new geometric parameter and is defined as an extra empty volume which is located behind the tangential entries at the rear part of the vortex chamber in the swirl injector. Backhole makes a difference to the spray characteristics of swirl injectors such as the spray angle, SMD, the mixing characteristics and so on. To find its characteristics, experiments are conducted by using a stroboscopic photography, a PDPA apparatus and a mechanical patternator. With the backhole, the mass flow rate of the swirl injector is increased and the center region of the injected flow has more large volume than that of without the backhole. Also the cone angle can be controlled by the backhole, so that the mixing efficiencies of swirl injectors are changed. Based on cold-flow tests, the swirl injector with the backhole may improve its performance.rformance.

Spray Characteristics of Closed-type Swirl Injectors with Varying Swirl Chamber Geometry (Closed-type 스월 인젝터의 스월 챔버 형상에 따른 분무특성 연구)

  • Chung, Yunjae;Jeong, Seokkyu;Oh, Sukil;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • This study has been done as a preliminary work in the process of confirming the modeling and calculation results on the dynamic characteristics of closed-type swirl injector which were performed by Ismailov et al. in Purdue university. Closed-type swirl injectors with replaceable swirl chamber parts were designed and manufactured. The steady state spray characteristics of closed-type swirl injector with varying swirl chamber length and diameter were verified. Mass flow rate was measured with a mass flow meter installed in front of the injector, and liquid film thickness was measured by Lefebvre's method with electrodes installed at the orifice of the injector. Variation of spray cone angle and break-up length were investigated from the spray images captured under different manifold pressure conditions.

The increase in the regression rate of hybrid rocket fuel by swirl flow and helical grain configuration (스월 유동과 나선형 그레인에 의한 하이브리드 로켓 연료의 연소율 향상)

  • Hwang, Yeong-Chun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.63-69
    • /
    • 2006
  • Experimental tests have been done with swirl injector and helical grain configuration to increase the regression rate of hybrid rocket solid fuel. Two types of injector were designed to evaluate the swirl effect of oxidizer stream on the increase in the regression rate. Results showed Type II injector with swirl number of 3.61 induced the better regression rate than Type I injector. Meanwhile, fuels with two different pitch number of 6 and 100 were used to analyzes the flow characteristics on the enhancement of regression rate. Test with fuels of pitch 6 showed better increase in the regression rate than in the pitch 100 when no swirler was imposed. This is due to the generation of strong turbulences in the oxidizer stream along the pitch 6 configuration. However, the regression rate could be increased further in the fuel with pitch 100 than with pitch 6 when swirl flow was imposed by Type II injector. This result implied that the fuel with pitch 100 could take a role of sustainer of the imposed swirl by swirler II instead of turbulence generator.

Study on the Flow Characteristics of Urea-SCR Swirl Injector according to the Needle Lift Profile (Urea-SCR용 스월 인젝터의 니들 리프트 형상에 따른 유동특성에 대한 연구)

  • Gwak, Eun-Jo;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.650-655
    • /
    • 2016
  • In this study, a computational simulation of the internal flow characteristics was carried out for a Urea-SCR Injector. A single hole swirl injector with a swirl disk and slanted nozzle was used in this simulation. The maximum needle lift and opening velocity were selected as the design parameters. To analyze the unsteady internal flow characteristics of the Urea-SCR injector, the moving grid technique was applied to simulate the delicate needle movement. According to the simulation results, the injected mass flow rate from the Urea-SCR injector decreased with increasing needle opening velocity and maximum needle lift. This is because the Urea-solution tends to fill the empty space that the needle previously occupied. The swirl flow is decreased as the flow goes through the injector nozzle, because of the friction with the nozzle wall. Also, during the maximum needle lift period, the swirl coefficient and mean swirl coefficient increase with increasing needle lift. The results of this study may be used as the basic design data of related injectors.

Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation (동축형 스월-제트 분사기의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2018
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by perturbing jet or swirl flow using a speaker as jet flow increases. As a result of measuring the ITF varying feed system length, a peak occurs at a resonance frequency of space where the perturbed flow passes. With jet excitation, the ITF magnitude decreases, but increases thereafter as increasing the jet flow. Therefore the larger the velocity difference between jet and swirl flow, the larger the ITF. With swirl excitation, ITF decreases as increasing the jet flow because of the energy decrease with respect to the constant downstream flow.

A Study on the Characteristics of Spray of Swirl Nozzle for Desel Engine Injector(I) (디젤기관용 와류분사 밸브의 분무특성에 관한 연구 (1) (대기압하의 분사))

  • 안수길;노철승;박상길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.88-97
    • /
    • 1984
  • The combustion process and the performance of a diesel engine are considerably affected by the characteristics of fuel spray. It is known that the spray of swirl nozzle for diesel engine injector of small orifice ratio becomes soft spray that has no core, therefore its penetration, one of the characteristics of spray becomes werse inspite of its good dispersion. In this paper, the spray characteristics of variously designed swirl nozzle for diesel injector were investigated by the photographic method. The nozzles, used in this experiment, vary in the diameter of swirl chambers and orifice ratio. From the results of the study, the sprays of this type nozzle of optimum swirl chamber and orifice ratio show that penetration decreased slightly but dispersion and spray volume increased remarcably, compared with unswirled single hole nozzle of the same size. It was suggested as a reason for the results, that the spray of this type swirl nozzle is similar to hard spray, therefore the core of the spray sustains good penetration considerably.

  • PDF