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ABSTRACT

A fully nonlinear model accounting for swirling effect has been applied in

analyzing the dynamic response for a classical swirl injector. The current work applied

highly accurate Boundary Element Methods (BEMs) in assessing its static and dynamic

characteristics. On the basis of moving surface treatment method and surface

instability study, which are obtained from the previous static characteristics analysis in

pressure-swirl injectors, this work was expanded for analyzing the dynamics of a

classical swirl injector. The dynamic response through injector components for

disturbed inflow condition was investigated. The modified code was validated from

comparison with the theoretical result for a typical swirl injector. Clearly the simulated

result shows the interesting characteristics of swirl injectors to provide either

amplification or damping of the input disturbance through each component. These

results give promise in applying the current model to nonlinear dynamic

characteristics of swirl injectors.

초 록

스월 인젝터의 비선형 동적특성을 모사할 수 있는 수치해석 모델을 개발하여 인젝터내

의 정적/동적 특성을 분석하였다. Boundary Element Methods (BEMs)을 적용한 수치모

델은 유체 경계면 산출에 매우 유리한 장점이 있어 표면의 불안정성 해석에 유용하게 적

용되어 왔다. 이전의 연구 결과에서는 스월효과를 고려할 수 있도록 확장된 수치모델을

이용하여 인젝터의 형상을 고려한 정적특성을 보여주었다. 본 논문에서는 유입 흐름에 교

란이 발생했을 때 인젝터의 각 구성요소에서의 동적응답을 분석하였고, 이론적 결과와 비

교하여 수치모델에 대한 타당성을 검증하였다. 본 수치해석 결과는 입력류에서의 교란이

각 인젝터 구성품을 지나면서 감쇠/증폭되고 위상차를 만들게 되는 과정을 잘 모사하고

있다. 개발된 수치모델은 인젝터의 다양한 설계변수들이 유동특성에 미치는 효과 분석과

이론적 모델로는 예측이 어려운 비선형 영역에서의 동적 응답특성 분석에 유용하게 적용

될 수 있을 것이다.
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Ⅰ. INTRODUCTION

A swirl injector or simplex/pressure-swirl

atomizer is one of the more common devices
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used to atomize liquids. The hollow-cone

simplex atomizer creates angular momentum

by injecting the liquid tangentially into a

vortex chamber. Since swirl injectors offer the

advantage in the throttling and give high

thrust per element, they have been intensely

studied for aerospace propulsion applications

over the past sixty years. In these applications,

both steady-state and dynamic characteristics of

the injector have been of great interest to

predict bulk performance and to understand

instability mechanism related to the dynamic

response of engines.

One of the historical models for the classical

swirl injector model as presented in Bayvel

and Orzechowski [1] utilizes the principle of

maximum flow to solve for liquid film

conditions within the injector. This principle is

borrowed from the Russian engineer

Zhukovsky from his studies of water flowing

over a dam; this principle directly applies to

swirl injectors by simply substituting

hydrostatic for centrifugal forces. The approach

has been used largely by Russian scientists

and engineers studying simplex atomizers [2].

As a second theory, Yule-Chinn [3] used axial

momentum conservation principle to derive the

equations of flow for a swirl injector without the

critical assumption of the principle of maximum

flow. While the utilization of the principle of

maximum flow and axial momentum

conservation is major difference between these

two theories, predictions using the two

approaches generally give similar results.

Even though many performance aspects for

swirl injectors have been investigated in past

studies, the nonlinear processes and the

dynamic behavior of free surfaces within swirl

injectors have been little studied. The

motivation for the current work is to expand

knowledge in these two areas. Use of

Boundary Element Methods (BEMs) provides

an ideal opportunity to address these issues

due to the high accuracy and the ability to

track free surfaces beyond atomization events.

The nonlinear weak-viscous BEM model[4,5]

has been effectively applied to high speed jet

instability so far, but most of studies have

been concentrated on the phenomenon

occurred at simple cylindrical liquid jet[6,7].

On the other hand, the various static

characteristics of a swirl injector for unforced

inflow conditions are found in the previous

study[8]. In that study, film properties such as

core radius and thickness inside / outside the

injector were computed for a variety of design

conditions with grid convergence test. Also,

the influence of injector geometry on flow

characteristics was studied through parametric

studies. By the way, in this study for dynamic

analysis, the geometry and flow condition of

the baseline injector was not changed from the

previous static characteristics analysis except

adding a long passage as a substitute for

tangential channel. Since any discernable

discrepancy for flow characteristics with/without

a long channel was not found, we can refer to

the previous study[8] for more detailed static

characteristics of a swirl injector.

V. G. Bazarov’s model[2] provides the

theoretical analysis method for dynamic

response of the classical injector. In this

theoretical model, the tangential channel, the

vortex chamber and the nozzle are analyzed

independently and then combined to give the

overall transfer function of the swirl injector.

The analysis result provides a good

comparison with our result by using BEM

code. The simulated dynamic response is

compared with the theoretically predicted

response obtained for pressure pulsation in the

feed system. In this study, on the basis of

moving surface treatment method and surface

instability study, which are obtained from the

previous static characteristics analysis in

pressure-swirl atomizers[8], this work was

expanded for analyzing the dynamics of a

classical swirl injector. The dynamic response

through injector components for disturbed

inflow condition was investigated. The calculated

response showed well the dynamic behavior of

a swirl injector for a forced inflow condition.

Ⅱ. MODEL DESCRIPTION

2.1 BEM Method accounting for Swirl

Figure 1 provides a schematic of a classical
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simplex injector noting the fluid injection via

tangential channels at the head end of the

vortex chamber. The gas core develops

naturally as a function of the vortex chamber

diameter, inlet mass flow and the degree of

swirl imparted to the fluid. Key dimensions

and nomenclature are noted in Fig. 1 for

application to the analysis and subsequent

discussion. Reference[7] provides a complete

description of the basic model elements; only

highlights will be presented here in the

interest of brevity. An inviscid, incompressible,

axisymmetric flow is presumed such that the

flow dynamics are governed by Laplace’s

equation, ▽
2
φ=0. The boundary element

method utilizes an integral representation of

this equation to provide a connection between

φ values on the boundary, the local geometry,

and the local velocity normal to the boundary,

/q nf= ¶ ¶ , as follows:

( ) 0
ˆi S

Gr qG ds
n

af f ¶é ù+ - =ê ú¶ë ûò
r

(1)

where ( )irf r is the value of the potential at a

point ir
r

, S is the boundary of the domain, a

is the singular contribution when the integral

path passes over the "base point", and G is the

free space Green’s function corresponding to

Laplace’s equation.

The unsteady Bernoulli equation provides a

connection between the local velocity potential

and the surface shape at any instant in time.

For the swirling flow, modifications are

required to account for the centrifugal pressure

gradient created by the swirl. Without swirl,

the dimensionless unsteady Bernoulli equation

is as follows,

21
2 t t v g

D Bou u u P z
Dt We We
f k
= - × - - +
r r r

where φ is the velocity potential and k is the

local surface curvature. The Weber number

(We=ρU
2
a/σ), Bond number (Bo=ρga

2
/σ) become

the dimensionless parameters governing the

problem where ρ and σ are the density and

the surface tension, respectively. Physically, this

result is a Lagrangian form suitable for use for

fluid elements moving with the local velocity

of the free surface. The terms on the RHS of

the equation include the effect of dynamic

pressure, local gas-phase pressure, capillary, and

hydrostatic pressure contributions respectively.

In Eq.(2), the total surface velocity,
r
tu , can be

computed via a superposition of the base axial

flow in the injector (f ,
ru ) with a potential

vortex ( vf ,
r
vu ). Letting u,v,w represent axial,

radial, and circumferential velocity components

respective- ly, we may write the total velocity

with a potential vortex (v) as follow:

t v t v t v t vu u u v v v w w wf f f= + = + = + = + (3)

Superposition of a potential vortex can be

achieved by starting with the complex potential:

( ) log( )
2
iF z z
p
G

= -
(4)

where z is complex variable, Г is vortex

strength, and F is the complex potential. The

resulting velocity components for this flow are

as follows,

0, 0,
2
G

= = =v v vu v w
rp

(5)

and
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Choosing the ideal injection velocity (U), the

orifice radius (a), and liquid density (ρ) as

dimensions, the dimensionless result can be

written as,

2
2

2

1 1 1
2 2

o
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(7)

where the Weber and Bond numbers are

defined as above. Since we have

nondimensionalized against the tangential

velocity, U, the Rossby number does not

appear explicitly in Eq.(7), but the last term on

the RHS of the equation corresponds to the

circumferential pressure developed by the

potential vortex. In this context, the radial

location of the center of the tangential channel,

ao, defines the dimensionless strength of the

(2)

(6)
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vortical flow. Equation (7) are integrated in

time using a 4th-order Runge-Kutta scheme to

provide the evolution of the velocity potential

and the motion of the free surface. Formally,

the resolution of the scheme is second-order in

space and 4th-order in time, but surface

curvature and capillary forces are resolved

with 4th-order accuracy given a set of points

defining the instantaneous shape. More details

regarding the numerical procedure can be

found in Ref.[7].

As the surface forms a conical film when it

exits the nozzle, instabilities result in the

formation of annular ring-shaped ligaments.

The droplet diameter after pinch-off is calculated

from the linear theory due to Ponstein[10]. The

growth rate, w, was related to the wave number

of the disturbance, k, as follows:
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where ar and Γr are the radius and the

circulation of the vortex-ring, respectively, and

I0 and I1 are modified Bessel functions of 0
th

and 1
st

order. When Γr=0, this result reduces

to the classic Rayleigh result for instability of

a liquid column. We have assumed that ar is

relatively smaller than the nozzle radius, a

which requires kar≤1.0 for application validity.

The equivalent circular diameter of the

ring-shaped ligaments is used to determine the

appropriate ar value for each ring. Using

Ponstein’s result, the k value that maximizes w

is determined for each ring pinched from the

parent surface. Droplets are assumed to be

formed instantaneously from this initial

condition and the initial velocity and position

of each droplet is determined assuming they

are uniformly distributed about the

circumference of the ring. The output from

this computation is then used as the input of

the droplet tracking program. Newton’s 2
nd

law is applied to describe the motion of a

droplet assuming aerodynamic drag to be the

only external force acting on a droplet.

Fig. 1. A classical swirl injector noting

nomenclature used for design
variables

( ) DDgDggD
D

D AuuuuC
dt
udm rrrrv

--= r
2
1

(9)

where DA is the projected area of a droplet
2( / 4)Dp , Dm and Du

r
are droplet mass and

velocity, respectively. Further information

regarding this approach is provided in Ref.[7].

2.2 Baseline Case Simulations

The nonlinear dynamic behavior of swirl

injector is investigated by the BEM method

using modified Bernoulli equation as derived in

the previous section. Figure 1 provides a

schematic of the injector to be analyzed. This

injector was designed by the monopropellant

swirl injector design procedure outlined in the

Ref.[1] to size an injector for mass delivery of

9.07E-2 kg/s of water at a pressure drop of 0.69

MPa. It has a nominal spray angle of 90 deg

and the film thickness to be approximately 0.43

mm at the nozzle exit. The injector geometry

for this design is summarized in Table 1 below:

Table 1. Assumed Baseline Geometry for
Swirl Injector Simulations

Radius to Center of Tangential Chn, ao = 3.226 mm

Radius of Nozzle, a = 2.151 mm

Radius of Vortex Chamber, Rv = 4.234 mm

Radius of Tangential Channel = 0.643 mm

Length of Tangential Channel = 1.516 mm

Length of Nozzle, Ln = 1.500 mm

Length of Vortex Chamber, Lv = 4.547 mm

No. of Inlet Channels = 4

Inlet Velocity = 17.50 m/s

(8)
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On the other hand, the inlet shape was

treated as a circular cylinder and its area was

calculated according to mass flow rate. In fact,

the tangential channel which is arranged

circumferentially to the injector body has to be

considered as a 3-dimensional problem. Since

proper treatment for this tangential channel is

essential to perform dynamic analysis for

whole injector, the possible various methods

have to be investigated. In this study, as one

of the methods to treat the tangential channel

in our axysimmetric code, the long channel

was added simply in the inlet as a substitute

for the real tangential channel. Figure 2 shows

a grid system for this assumed injector

geometry. In order to keep the same mass

flow rate through the channel, the inlet width

is linearly reduced with increasing radius. For

this simulation, the non-dimensional parameters

and the geometric criterion are calculated from

the reference jet speed and the reference

nozzle radius of U = 17.50 m/sec and a = 2.151

mm, respectively.

In addition, the corner is treated as a

moving grid to form a right angle between

them and the grid space along the wall is

stretched according to movement of the contact

point. Therefore, we do not have to know the

core radius inside the injector throughout the

simulation and the gas core radius appear

naturally as a simulation result. For the

baseline conditions described above, Reference

[8] for static flow characteristic analysis with

the geometric condition provided a comparison
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Moving wall condition

Free surface
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z/a

Fig. 2. Grid system having a long channel for
a swirl injector

of free surface shapes in the nozzle region for

various grids indicating an insensitivity to grid

size for all cases investigated. Obviously,

results showed no discernable difference in

core radius, film thickness, velocities, and jet

half angle, etc., for the meshes studied. On the

other hand, as shown in Table 2, the

simulation result is in reasonable agreement

with the linear inviscid theory. The core radius,

the film thickness and the spray angle are

exactly matched with the theoretical result[1].

Table 2. Calculated result comparison against
the theoretical result of V.G.Bazarov [1]

Simulation Theory

Core radius 0.704 0.700

Film thickness 0.205 0.200

Half angle (deg) 45.5 45.0

Total
velocity

(m/sec)

at nozzle entr. 19.4(at wall)10.9(free surf.) -

at nozzle exit 23.5(at wall)20.7(free surf.) -

outside injector 35.90 36.09

Axial
velocity

(m/sec)

through nozzle 17.45 17.37

outside injector 26.26 26.26

III. RESULTS AND DISCUSSIONS

3.1 Analysis of Static Characteristics

The various static characteristics analyses of

a swirl injector for unforced inflow conditions

are found in the other paper of Ref.[8]. In this

reference, film properties such as core radius

and thickness inside/outside the injector were

computed for a variety of design conditions.

Also, the influence of injector geometry on

flow characteristics was studied through

parametric studies. By the way, in this study

for dynamic analysis, the geometry and flow

condition of the baseline injector was not

changed from the previous static characteristics

analysis except adding a long passage for

tangential channel. Since any discernable

discrepancy for flow characteristics with/without

a long channel was not found, we can refer to

the previous study[8] for more detailed static

characteristics of a swirl injector.
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In an unforced inflow condition for the

baseline injector shown in Fig. 1, the radial/

axial velocity profiles with theoretical value

along the fluid surface are shown in Fig. 3.

Figure 4 also shows the flow structure inside

the injector and this figure provides the final

jet shape of a typical swirl injector with shed

droplets. The reproduced jet has characteristics

similar to the actual spray jet which is seen in

real world. We can see clearly the core

formation inside the swirl injector and the

cone angle formation outside the injector in

this figure. The shed droplets are moving to

the same direction with the parent jet and

their size distribution is almost constant. The

jet shown in this figure has the flow

properties of SMD/a(droplet size) = 0.185, θD

(cone half angle) = 45.8 deg, and UD/U (total

velocity) = 1.75. For this jet, the other

statistical properties are summarized in Table

3. Figure 5 provides 3-dimensionally the whole

jet evolution and the jet core structure of a

classical swirl injector. The 3-dimensional movement
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Fig. 3. Radial (up) and axial (down) velocity
profile along fluid surface in aclassical
swirl injector

Table 3. Statistical properties for a swirl injector

Properties

SMD/a 0.185

ND 1741

DD /a 0.198

/Du U 1.21

/Dv U 1.26

( )o
Dq 45.8

Fig. 4. Final jet shape showing shed droplets
for the baseline swirl injector, at t*=12.0

 

Fig. 5. 3-Dimensionally visualized final jet shape
in a classical swirl injector

of shed droplets is added to the parent jet.

We can see the breakup length much clearly

in this figure. The breakup length is kept

almost in constant after t*=5.0 and shed

droplets are moving downstream as the

direction angle of parent jet. The overall spray

is qualitatively similar to that of actual

experimental image[10].

3.2 Dynamic Characteristics Analysis

Dynamic response for disturbed inflow

velocity was investigated in this study. The

same classical injector as shown in Fig. 1 was

analyzed using our BEM model. That is, the

response of the classical swirl injector having
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Fig. 6. Selected locations for dynamic response
analysis in a classical swirl injector

U = 17.5 m/sec for 0.69 MPa pressure drop

was studied. Figure 6 shows measured

locations for dynamic response analysis in our

calculation. These points were chosen for

convenience for our response analysis. Since

the response could be dependent on the

measured location, we have to be careful to

compare the result with any theoretical

/experimental result.

In our simulation, since the dimensionless

time in the computational domain is
* /t U a t= × , the oscillation frequency for

disturbed inflow can be set as;

* * *( ) sin( )F A tv v= (10)

where
*v , A is the nondimensional wave

number and the amplitude, respectively. In our

study, the disturbance is set as the fluctuation

of the inflow velocity in the tangential channel.

In addition, the inlet for tangential channel is

assumed as the circular cylinder in our

axysimmetric simulation and its area is

determined to have the same mass flow rate

with the actual injector. In order to keep the

constant area for the same mass flow rate

throughout tangential channel, the channel width

at the tip and the root can be calculated as;

, ,
v

T tip T root
v T

R
W W

R L
=

+ , where

2

,
4
2

T
T root

v

RW
R

=

As a first condition to investigate the

dynamic response of a classical injector by

using our modified BEM code, the oscillation

frequency and amplitude for disturbed inflow

were set as f=5000 Hz and A=0.1, respectively.

This simulation takes much longer time than

the cases for obtaining statistical properties

because we have to confirm its repetitive

behavior for several waves. Therefore, in order

to save the computational cost, this simulation

was restarted from the steady state solution

obtained at the time of t*=5.0. Then, the

stabilized response after about t*=10.0 was

obtained as shown in Fig. 7. Clearly, we can

see the recurrent behavior for initially

disturbed inflow velocity in the several waves

of this figure.

The dynamic response for a single wave

through a classical swirl injector is shown in

Fig. 8. Each wave of this figure shows the

variation in the phase and amplitude of the

response at several locations for disturbed

10 12 14 16 18 20
0.85

0.90

0.95

1.00

1.05

1.10

1.15

U inp

t*

Fig. 7. Raw input (up) and response (down) for
initially disturbed inflow velocity; the
oscillation frequency and the amplitude
were set as f=5000 Hz and A=0.1,
respectively

(11)



74 박홍복 韓國航空宇宙學會誌

Fig. 8. Dynamic response through a classical
swirl injector, which was investigated
in velocity response; the oscillation
frequency and the amplitude were set
as f=5000 Hz, A=0.1 (up), and f=1000
Hz, A=0.1 (down), respectively

inflow velocity. In the upper figure of Fig. 8,

the oscillation frequency and the amplitude

were set as f=5000 Hz and A=0.1, respectively.

Clearly, we can see the phase shift with

magnitude change due to damping and

amplification through each component. The

lower figure of Fig. 8 shows the dynamic

response in case of relatively lower frequency.

In this case, the oscillation frequency and

amplitude were set as f=1000 Hz and A=0.1,

respectively. From the comparison between

these two frequencies, it is found that the

response can be changed by the frequency range

as known in the theoretical analysis of Bazarov[2].

IV. CONCLUSIONS

A fully nonlinear model accounting for

swirling effect has been applied in analyzing

the dynamic response for axisymmetric swirl

liquid jets. The current work applied highly

accurate Boundary Element Methods (BEMs) to

simulate the free surface both inside the vortex

chamber and within the hollow-cone/primary

atomization zone outside the injector. A

potential vortex was superposed to the bulk

flow to simulate the swirl in assessing its

static and dynamic characteristics.

On the basis of moving surface treatment

method and surface instability study, which

are obtained from the previous static

characteristics analysis in pressure-swirl

atomizers, this work was expanded for

analyzing the dynamics of a classical swirl

injector. The dynamic response through injector

components for disturbed inflow condition was

investigated. The simulated dynamic response

showed a good agreement with the 1-D

inviscid theoretical results. Clearly the

simulated result shows the interesting

characteristic of swirl injectors to provide

either amplification or damping of the input

disturbance through each component. Even

though the current code has to be improved in

treating tangential channel and in getting exact

mass flow rate, the calculated response showed

well the behavior of a swirl injector for a

forced inflow condition. These results give

promise in applying the current model to

nonlinear dynamic characteristics of swirl

injectors.
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