DOI QR코드

DOI QR Code

Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation

동축형 스월-제트 분사기의 음향가진에 따른 동특성

  • Bae, Jinhyun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Taesung (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Jeong, Seokgyu (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Jeong, Chanyeong (Mechatronics R&D Center, Samsung Electronics Co., Ltd.) ;
  • Choi, Jeong Yeol (Department of Aerospace Engineering, Pusan National University) ;
  • Yoon, Youngbin (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2017.06.05
  • Accepted : 2017.11.15
  • Published : 2018.08.01

Abstract

In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by perturbing jet or swirl flow using a speaker as jet flow increases. As a result of measuring the ITF varying feed system length, a peak occurs at a resonance frequency of space where the perturbed flow passes. With jet excitation, the ITF magnitude decreases, but increases thereafter as increasing the jet flow. Therefore the larger the velocity difference between jet and swirl flow, the larger the ITF. With swirl excitation, ITF decreases as increasing the jet flow because of the energy decrease with respect to the constant downstream flow.

본 연구에서는 제트 유동 증가에 따라 스피커로 제트와 스월 유동에 각각 가진을 가하여 기체-기체 동축형 제트-스월 분사기의 분사기 전달함수(Injector Transfer Function, ITF)을 측정하였다. 공급시스템의 길이를 변화시켜 ITF를 측정한 결과 공급시스템의 공진주파수에서 피크가 발생하는 것을 확인할 수 있었다. 제트 유동에 가진을 줄 때, 제트 유동이 증가함에 따라 ITF의 크기는 감소하다가 다시 증가하는 것을 확인할 수 있었다. 즉, 두 유동의 속도차가 클수록 ITF의 크기가 증가하였다. 스월 가진 시 제트 유동이 증가함에 따라 ITF가 감소하는 것을 확인할 수 있었는데, 이는 후단에서 일정 유량 대비 가진 에너지가 감소하기 때문이다.

Keywords

References

  1. Kang, S.J. and Chang, Y.K., "Feasibility Study of Moon Exploration Satellite Launch Using Korea Space Launch Vehicle," Proceeding of the 2008 KSAS Spring Conferences, Pyeongchang, Korea, pp. 1097-1100, Apr. 2008.
  2. Lieuwen, T., Torres, H., Johnson, C. and Zinn, B.T., "A mechanism of combustion instability in lean premixed gas turbine combustors," Journal of Engineering for Gas Turbines and Power, Vol. 123, No. 1, pp. 182-189, 2001. https://doi.org/10.1115/1.1339002
  3. Noiray, N., Durox, D., Schuller, T. and Candel, S., "A unified framework for nonlinear combustion instability analysis based on the flame describing function," Journal of Fluid Mechanics, Vol. 615, No. 1, pp. 139-167, 2008. https://doi.org/10.1017/S0022112008003613
  4. Zinn, B.T. and Lieuwen, T.C., "Combustion instabilities: Basic concepts, Combustion Instabilities in Gas Turbine Engines: Operational Experience," Fundamental Mechanisms, and Modeling, Vol. 210, No. 1, pp. 3-26, 2005.
  5. Goertz, C., "A modular method for the analysis of liquid rocket engine cycles." 31st Joint Propulsion Conference and Exhibit, San Diego, C.A., U.S.A., AIAA 95-2966, Jul. 1995.
  6. Demyanenko, Y., Dmitrenko, A., Ivanov, A. and Pershin, V., "Turbopumps for gas generator and staged combustion cycle rocket engines," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, A.Z., U.S.A., AIAA 2005-3946, pp. 3946-3953, Jul. 2005.
  7. Bazarov, V.G. and Yang, V., "Liquid-propellant rocket engine injector dynamics," Journal of Propulsion and Power, Vol. 14, No. 1, pp. 797-806, 1998. https://doi.org/10.2514/2.5343
  8. Ando, R., Koizumi, M. and Ishikawa, T., "Development of a simulation method for dynamic characteristics of fuel injector," IEEE Transactions on Magnetics, Vol. 37, No. 1, pp. 3715-3718, 2001. https://doi.org/10.1109/20.952697
  9. Som, S., Longman, D. E., Ramírez, A. I. and Aggarwal, S. K., "A comparison of injector flow and spray characteristics of biodiesel with petrodiesel," Fuel, Vol. 89, No. 1, pp. 4014-4024, 2010. https://doi.org/10.1016/j.fuel.2010.05.004
  10. Davis, J., Campbell, R., Davis, J. and Campbell, R., "Advantages of a full-flow staged combustion cycle engine system," 33rd Joint Propulsion Conference and Exhibit, Seattle, W.A., U.S.A., AIAA 1997-3318, pp. 3318-3330, Jul. 1997.
  11. Farhangi, S., Yu, T., Rojas, L., Sprouse, K. and McKinnon, J., "Gas-gas injector technology for full flow stage combustion cycle application," 35th Joint Propulsion Conference and Exhibit, Los Angeles, C.A., U.S.A., AIAA 99-2757, pp. 2757-2765, Jun. 1999.
  12. Marshall, W., Pal, S., Woodward, R. and Santoro, R., "Benchmark wall heat flux data for a GO2/GH2 single element combustor," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, A.Z., U.S.A., AIAA 2005-3572, pp. 3572-3584, Jul. 2005.
  13. Richecoeur, F., Ducruix, S., Scouflaire, P. and Candel, S., "Experimental investigation of high-frequency combustion instabilities in liquid rocket engine," Acta Astronautica, Vol. 62, No. 1, pp. 18-27, 2008. https://doi.org/10.1016/j.actaastro.2006.12.034
  14. Seo, S.H., Lee K.J. and Choi H.S., "Study on Standards of Combustion Stability Assessment of Liquid Rocket Engine Combustion Devices," Journal of the Korean Society of Propulsion Engineers, Vol. 13, No. 6, pp. 34-40, 2009.