• 제목/요약/키워드: Swirl head

검색결과 84건 처리시간 0.018초

Optimization of Swirl Ratio of Intake Port in 11L LPLi Engine (11L급 LPLi방식 대형엔진의 흡기스월비 최적화 연구)

  • 이진욱;강건용;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제11권3호
    • /
    • pp.99-105
    • /
    • 2003
  • The configuration of intake port is a dominant factor of inlet air flow and mixture formation in an engine. In this study, as an available technology to optimum intake port, the flow box system using resine has been applied. So we presents a methodology for estimating inlet flow characteristics in this paper. This quantified experimental result shows good agreements with visualization data in a cylinder. We obtained the optimal value of swirl ratio and flow coefficient under steady flow rig test for new development of intake port for heavy-duty engine. From this results, the cylinder heat with a good evaluated swirl flow characteristics was developed and adapted for a 11L heavy-duty engine using the liquid phase LPG injection (LPLi) system. This .research expects to clarify major factor that make the intake port efficiently.

Effects of the Inlet Flow Conditions of a Helical Intake Port on the In-cylinder Swirl Characteristics (나선형 흡기포트 입구의 유동조건이 실린더 내 선회특성에 미치는 영향에 관한 연구)

  • 이지근;강신재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제8권2호
    • /
    • pp.9-18
    • /
    • 2000
  • Combustion and emission characteristics in a direct injection diesel engine is closely related to the intake port system. It is therefore important to understand the swirl flow characteristics formed by a helical intake port. However there are still many uncertainties. The purpose of this experimental study is to investigate the effects of the valve eccentricity ratio and the inlet flow conditions of a helical intake port on the characteristics of an in-cylinder swirl flow. A steady state flow test rig consisted of ISM(impulse swirl meter), LFM(laminar flow meter) and cylinder head with a helical intake port was used. The swirl ratio(Rs) and mean flow coefficient(Cf(mean)) with inlet flow conditions were measured. The results of these experiment can be summarized as follows. Swirl flow characteristics of a helical intake port are affected by the inlet flow conditions, and especially they are much affected by the length of a manifold runner and the rotational angle of a curved manifold runner.

  • PDF

A Study on the Effects of Intake Port Eccentricity on the In-cylinder Swirl Ratio Characteristics in a 4 Valve Diesel Engine (4밸브 디젤기관의 흡기포트 편심이 실린더 내 선회비 특성에 끼치는 영향에 관한 연구)

  • 이지근;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제5권5호
    • /
    • pp.157-169
    • /
    • 1997
  • The effects of intake port eccentricity on the characteristics of in-cylinder swirl ratio in a 4-valve diesel engine having the two intake ports; one is a helical intake port and the other is a tangential intake port were investigated by using the ISM(impulse swirl meter) in steady flow test rig. Swirl ratio($R_s$) and mean flow coefficient($C_{f(mean)}$) with valve eccentricity ratio($N_y$) and axial distance(Z/B) were measured. As the results from this experiment, the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by intake port eccentricity. There is a difference in the mass flowrate through the two intake ports, and the mass flowrate through the tangential intake port is 19% more than that of the helical intake port. Therefore, we could know that the effects of the mass flowrate ratio through each intake port besides intake port shape should be conidered.

  • PDF

In -Cylinder Flow Characteristics Varying Intake Valve Lift (밸브 리프트 변화에 따른 실린더 내 흡입 공기의 유동 특성)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제7권9호
    • /
    • pp.82-88
    • /
    • 1999
  • The object of this study is to find new evaluation index for in-cylinder flow chracteristics istead of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angularflow characteristics instead of swirl and tumble coefficient.

  • PDF

A study on intake ports design for a fast burn engine using a LDV (LDV를 이용한 급속연소형 흡기포트 설계에 관한 연구)

  • 성낙원;강건용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제12권6호
    • /
    • pp.1358-1371
    • /
    • 1988
  • The combustion process is the most important process in the S.I. engine since it determines performance and emissions. As the flame propagates slowly due to EGR or lean mixture, the fast burn system is widely used in the modern engines in order to improve engine performance. As the basic research for the fast burn system of the S.I engine, this study is aimed to identify the effects of the intake port design on the air motion inside a cylinder. In this study various intake ports were designed and tested. Swirl levels for the different intake ports were measured by a swirl meter and LDv.Also transient air motion inside a cylinder is further investigated following the motion of the boston. Out of the various intake ports tested in this study the masked shroud head (MSH) generates the highest swirl while keeping satisfactory volumetric efficiency. The MSH port also produces high level of turbulence by shearing action between cylinder wall and swirl.

Development of Sub-scale Combustor for a Liquid Rocket Engine Using Swirl Injector with External Mixing (외부혼합 와류분사기를 장착한 액체로켓엔진용 축소형 연소기 개발)

  • Han, Yeoung-Min;Kim, Seung-Han;Seo, Seong-Hyeon;Lee, Kwang-Jin;Kim, Jong-Gyu;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제32권10호
    • /
    • pp.102-111
    • /
    • 2004
  • The procedure of design and manufacture of sub-scale combustor using bipropellant swirl injector with external mixing for a liquid rocket engine are described. The results of cold flow test, ignition test and combustion test of the sub-scale combustor are also given in this paper. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has a injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl injector and 18 main swirl injectors. The cold flow, ignition and combustion tests were successfully performed without damage of combustor. Results of hot firing tests show that combustion efficiency meets the target of design and operations of start and stop cyclogram are stable and high frequency combustion instability does not occur.

Combustion Tests of Sub-scale Combustor for a Liquid Rocket Engine with Internal Mixing Swirl Injector (내부혼합 동축 와류형 분사기를 장착한 액체로켓엔진용 축소형 연소기의 연소시험)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제11권5호
    • /
    • pp.72-77
    • /
    • 2007
  • The combustion test results of the sub-scale combustor having dual swirl injector with internal mixing for a liquid rocket engine are described. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has an injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl injector and 18 main swirl injectors of internal mixing. The combustion tests were successfully performed at design and off-design points without any damages on the injectors. Combustion characteristics velocity of 1756m/s was measured at design point. High frequency combustion instability was not observed but low frequency pulsations occurred at off-design conditions.

액체로켓엔진 축소형 고압 연소기 설계

  • Han, Yeoung-Min;Kim, Seung-Han;Seo, Seong-Hyeon;Lee, Kwang-Jin;Kim, Jong-Gyu
    • Aerospace Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.135-141
    • /
    • 2005
  • The procedure of conceptual and detailed design of sub-scale combustor using bipropellant swirl or impinging injector with external or internal mixing for a liquid rocket engine are described in this paper. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has a injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl or impinging injector and 18 main swirl or impinging injectors.

  • PDF

Study on the Combustion Characteristics of Subscale Liquid Rocket Combustion Chamber (축소형 액체로켓엔진 연소기의 연소특성에 대한 연구)

  • Kim Jong-Gyu;Lee Kwang-Jin;Song Ju-Young;Moon Il-Yoon;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.288-293
    • /
    • 2006
  • The combustion performances and characteristics of the subscale liquid rocket combustion chamber are discussed in this paper. Subscale combustion chamber is composed of mixing head, ablative cooling cylinder, and water cooling nozzle. The mixing head has eighteen coaxial swirl injectors and one center coaxial swirl injector for ignition. The mixing heads employing the injectors of low different recess length are considered in this paper. The results of the firing test, comparison of performance, and characteristics of static and dynamic pressures of the four different mixing heads are described. The characteristics of combustion at design and of design points are also discussed.

  • PDF

Steady-Flow Characteristics and Its Influence on Spray for Direct Injection Diesel Engine

  • Jeon, Chung-hwan;Park, Seung-hwan;Chang, Young-june
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.986-998
    • /
    • 2002
  • Flow and spray characteristics are critical factors that affect the performance and exhaust emissions of a direct injection diesel engine. It is well known that the swirl control system is one of the useful ways to improve the fuel consumption and emission reduction rate in a diesel engine. However, until now there have only been a few studies on the effect of flow on spray. Because of this, the relationship between the flow pattern in the cylinder and its influence on the behavior of the spray is in need of investigation. First, in-cylinder flow distributions for 4-valve cylinder head of DI (Direct Injection) Diesel engine were investigated under steady-state conditions for different SCV (Swirl Control Valve) opening angles using a steady flow rig and 2-D LDV (Laser Doppler Velocimetry). It was found that swirl flow was more dominant than that of tumble in the experimented engine. In addition, the in-cylinder flow was quantified in terms of swirl/tumble ratio and mean flow coefficient. As the SCV opening angle was increased, high swirl ratios more than 3.0 were obtained in the case of SCV -70° and 90°. Second, spray characteristics of the intermittent injection were investigated by a PDA (Phase Doppler Anemometer) system. A Time Dividing Method (TDM) was used to analyze the microscopic spray characteristics. It was found that the atomization characteristics such as velocity and SMD (Sauter Mean Diameter) of the spray were affected by the in-cylinder swirl ratio. As a result, it was concluded that the swirl ratio improves atomization characteristics uniformly.