• 제목/요약/키워드: Swing time

검색결과 324건 처리시간 0.023초

발전소 주급수 계통 감발 과정에서의 스윙체크밸브 닫힘 시점의 실험적 결정 (An Experimental Determination of a Swing Check Valve Closure Time in the Main Feed Water System of a Power Plant during Shut-down Process)

  • 서진성;김원민
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.843-849
    • /
    • 2009
  • The reliable operation of a swing check valve in the main feed water system of a power plant is most essential for successful shout-down process. A failure to close the valve at proper time often leads to the instability of the main feed water system, or even to an emergency stop of the power plant. In reality it is a very difficult task to monitor the behavior of a swing check valve. Furthermore it is impossible to see the motion of the valve. In this work two measurements were carried out simultaneously to determine the precise valve closure time. The dynamic pressure measurements were made at the inlet and outlet regions of the swing check valve. The transient vibration of the valve housing in the direction of water flow was also measured, which enabled the measurement of the transient vibration of the valve housing near valve closure. By comparing the results produced from these measurements the precise valve closure time could be determined. By carrying out order tracking technique using the dynamic pressure signals and pump rpm signal, the complicated dynamic problems inside the main feed water system can be more easily dealt with. This measurement scheme might be implemented in a power plant on a real-time basis without much difficulty. If this could be implemented, valuable information essential for shut-down operations can readily be passed on to the main control room. The feasibility of this implementation was demonstrated by this experimental work.

골프드라이빙 스트로크시 역학적 분석 (Mechanical Analysis of golf driving stroke motion)

  • 박광동
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.205-219
    • /
    • 2002
  • This research seeks to identify the plantar pressure distribution graph and change in force in connection with effective golf drive strokes and thus to help ordinary golfers have appropriate understanding on the moving of the center of weight and learn desirable drive swing movements. To this end, we conducted surveys on five excellent golfers to analyze the plantar pressure applied when performing golf drive strokes, and suggested dynamic variables quantitatively. 1) Our research presents the desire movements as follows. For the time change in connection with the whole movement, as a golfer raises the club head horizontally low above ground from the address to the top swing, he makes a semicircle using the left elbow joint and shaft and slowly turns his body, thus lengthening the time. And, as the golfer twists the right waist from the middle swing to the impact with the head taking address movement, and does a quick movement, thus shortening the time. 2) For the change in pressure distribution by phase, to strike a strong shot with his weight imposed from the middle swing to the impact, a golfer uses centrifugal force, fixes his left foot, and makes impact. This showed greater pressure distribution on the left sole than on the right sole. 3) For the force distribution graph by phase, the force in the sole from the address to halfway swing movements is distributed to the left foot with 46% and to the right foot with 54%. And, with the starting of down swing, as the weight shifts to the left foot, the force is distributed to the left sole with 58%. Thus, during the impact and follow through movements, it is desirable for a golfer to allow his left foot to take the weight with the right foot balancing the body. 4) The maximum pressure distribution and average of the maximum force in connection with the whole movement changed as the left (foot) and right (foot) supported opposing force, and the maximum pressure distribution also showed much greater on the left sole.

고속 저전압 스윙 온 칩 버스 (High Speed And Low Voltage Swing On-Chip BUS)

  • 양병도;김이섭
    • 대한전자공학회논문지SD
    • /
    • 제39권2호
    • /
    • pp.56-62
    • /
    • 2002
  • 문턱전압 스윙 드라이버(threshold voltage swing driver)와 이중 감지 증폭기 리시버(dual sense amplifier receiver)를 가진 새로군 고속 저전압 스윙 온 칩 버스 (on-chip BUS)를 제안하였다. 문턱전압 스윙 드라이버는 버스에서의 전압상승 시간을 CMOS 인버터(inverter) 드라이버에서의 약 30% 이내로 줄여주고, 이중 감지 증폭기 리시버는 감지 증폭기 리시버를 사용하는 기존의 저전압 스윙 버스들의 데이터 전송량을 두 배 향상시켜 준다. 문턱전압 스윙 드라이버와 이중 감지 증폭기 리시버를 모두 사용할 경우, 온 칩 버스에서 사용하는 기존의 CMOS 인버터와 비교하여 제안된 방식은 약 60%의 속도 증가와 75%의 소모전력 감소를 얻는다.

The "Swing-Door" Regrafting of Donor Site: An Alternative Method for Split-Thickness Skin Graft in the Hand

  • Jin Soo Kim;Chan Ju Park;Sung Hoon Koh;Dong Chul Lee;Si Young Roh;Kyung Jin Lee
    • Archives of Plastic Surgery
    • /
    • 제51권1호
    • /
    • pp.102-109
    • /
    • 2024
  • Background Skin defects in the hands are common injuries, and autologous skin grafting is the ideal treatment. However, complications can occur at the donor and recipient sites. This study compares the "Swing-door" technique with conventional skin grafting. Methods From August 2019 to February 2023, 19 patients with skin defects of hand underwent the "Swing-door" split-thickness skin graft (STSG) technique. The thin epithelial layer was elevated with proximal part attached. Skin graft was harvested beneath. Donor site was then closed with epithelial flap like a "Swing-door". The outcomes were evaluated in terms of healing time, scar formation, and pain at the donor and recipient sites. The data were compared with the conventional STSG. Results The "Swing-door" group had lower graft take percentages, but complications did not significantly differ between the two groups. The "Swing-door" technique resulted in better cosmetic outcomes, as evidenced by lower Vancouver Scar Scale scores, faster donor site epithelialization, and reduced pain and discomfort during the early postoperative period, as measured by Visual Analog Scale. Conclusion The "Swing-door" STSG is a useful alternative for treating hand skin defects.

프로골퍼의 드라이버 비거리증가를 위한 목적스윙 시 X-Factor, X-Factor Stretch, 클럽변인과 전체비거리(total length)와의 상관관계 (Analyze the Correlation between Variable Factors, Kinematic Factors(x-factor, x-factor stretch) and Club Impact Factors, Affecting the Total Length of the Ball During a Pro-Golfer's Driver Swing)

  • 박혜림;소재무;김재정
    • 한국운동역학회지
    • /
    • 제25권1호
    • /
    • pp.11-19
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the correlation between physical factors (X-factor, X-factor stretch) and club factors (club speed, ball speed, club path, smash factor, vertical launch angle, spin rate, flight time, total length) during impact and it affect on the total distance of the ball during a golf driver swing. Background : There were not enough studies that analyzed the correlation between physical factors(X-factor, X-factor stretch) and club factors(club speed, ball speed, club path, smash factor, launch angle, spin rate, flight time, total length) during a purpose swing to increase total distance. Method : For this study, 9 right handed professional male golfers (KPGA) were chosen. The test subject group used their own drivers and each took a total of 10 swings. These swings consisted of 5 purpose swings to increase total distance and 5 normal swings. Results : The purpose swing to increase total distance showed larger physical factors(X-factor, X-factor stretch) compared to a normal swing however the results were not statistically significant. Total distance increased during a purpose swing as a result of ball and club speed. Conclusion : The results showed that club factors, ball speed and club speed contributed the most in affecting the total distance of the ball during a purpose swing.

골프 드라이버스윙 시 지면반력 반복측정 횟수와 지면반력 특성 (Number of Trials for the Reliable Golf Swing Ground Reaction Force Data Collection and Its Characteristics)

  • 박영훈;염창홍;서국웅;서국은
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.115-125
    • /
    • 2007
  • Grould Reaction force(GRF) is important in human movements and GRF measurements are one of the most frequently used tool in biomechanical studies. In the studies of the golf swing motion, people refer to GRF as weight transfer. A successful golf swing motion requires many segments activation sequences which are controled by the nerve system. Due to the inter- and intra-individual variability of the human movement and the movement strategies, reliability of the measurements are important in human movement studies. Previous golf researches were based on group studies and certain events' values were analyzed. The purposes of this study were to determine the number of trials for the reliable golf swing GRF data collection, to reveal the variability level of the meaningful components of the golf swing GRF, and to classify the types of the golf swing GRF patterns. Twenty three male professional golfers($26.4{\pm}6.6$ years, $174.3{\pm}5.2\;cm$, $71.3{\pm}6.5\;kg$) signed an informed consent form prior to participation in this study. GRFs of driver swings were collected with Kistler 9285 force platform and 9865A amplifier, and calculated by the KwonGRF program(Visol, Korea). Sampling frequency was 1080 Hz. GRF data were trimmed from 1.5 s prior to the impact to 0.5 s after the impact. The number of trials for the reliable GRF collection was determined when the change in floating mean overs the 25 % of the standard deviation of that variable. Variabilities of the variables were determined by the coefficient of variation(CV) of 10 %. The types of GRF patterns were determined by visual inspection of the peak GRF shapes. The minimum number of trials for the reliable golf swing GRF data collection was five. Ten-trial seems more conservative. The value of the peak GRF was more reliable than the value of the impact GRF. The CV of the peak GRF and impact GRF were 7.4 %, 15.2 %, respectively. Because of the +/- sigh of the peak GRF appearance time, it was impossible to calculate CV of the peak GRF appearance time. Golf swing GRF patterns were classified as sing peak type, double peak type, and plateau peak type. This classification suggests the presence of the different golf swing weight transfer strategies.

로프 길이변화를 고려한 크레인의 흔들림 제어에 관한 연구: Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.58-66
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

로프 길이 변화를 고려한 크레인의 흔들림 제어에 관한 연구;Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.631-636
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the experiment result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

크레인의 Anti-Swing 및 위치 제어기의 개발 (Development of controller for anti-swing and position of crane)

  • 정승현;권판조;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.277-281
    • /
    • 1996
  • The roof crane system is used for transporting a variable load to a target position. At this time, the goal of crane system is transporting to a goal position as soon as possible with no rope oscillation. Generally crane is operated by expert's knowledge, but recently automatic control with high speed and rapid transportation is required. In this thesis we developed fuzzy controller of crane which has simplified expert's knowledge base for anti-swing and rapid tansportation to goal position.

  • PDF

대퇴절단자와 정상인 걸음걸이의 운동학적 요인과 발목관절 강성 비교 (Comparisons of Kinematic Factors and Stiffnesses of the Lower-limb Joints between Transfemoral Amputees and Normal Adults)

  • 이재훈;이정호;하종규
    • 한국운동역학회지
    • /
    • 제23권1호
    • /
    • pp.77-83
    • /
    • 2013
  • The purpose of this study was to compare kinematic variables and stiffnesses of ankle joints between normal person and transfemoral amputee gait in order to develop or fit prosthetic leg. Twenty subjects (ten normal persons and ten transfemoral amputees) participated in this experiment, and walked three trials at a self-selected pace. The gait motions were captured with Vicon system and variables were calculated with Visual-3D. The velocity, stride length, stride width, cycle time, double limb support time and right swing time of gaits were statistically significant. Because coefficients of variability of normal persons on velocity, double limb support time and swing time were greater than transfemoral amputees, normal persons controlled these gait variables effectively. The stiffnesses of ankle joints were not statistically significant, but patterns of stiffnesses of ankle joints during three rockers were absolutely different. The negative correlations between stiffnesses of ankle joints and cycle time and swing time were presented. These differences suggest that developing and fitting prosthetic leg were demanded. Further studies should develop fitting program and simulator of prosthetic leg.