• Title/Summary/Keyword: Swing time

Search Result 326, Processing Time 0.038 seconds

Effect of Kettle Bell Swing Exercise on the Body Composition and Lower Limb Muscular Activity

  • Jeong, Ho-Jin;Kim, Yong-Seong;Cho, Woon-Soo;Kim, Won-Gi;Kim, Yong-Beom;Kim, Yong-Nam
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.194-200
    • /
    • 2017
  • Purpose: This study examined the effect of Kettle bell swing exercise on the body composition and lower limb muscular activity. Methods: As subjects, 26 normal adults in their twenties were divided randomly into the experiment group (n=13), in which Kettle bell exercise was applied, and the control group (n=13), in which bar exercise was applied. Both groups participated in the interventions for eight weeks with three sessions per week. Each group was assessed before training and four and eight weeks into the training to determine the effects of training intervention within and between the groups. The body composition was measured with a body composition analyzer. The changes in muscle activity were measured with a surface electromyography. An independent t-test was conducted to test the significance between the groups according to the measurement points and Repeated measured ANOVA was performed to compare the groups according to the periods with the statistical significance level set to ${\alpha}=0.05$. Results: No significant changes to the main effects of time and the interactions of time according to the measurement points were observed in the Kettle bell and control groups in the body composition (p>0.05). The muscular activity of both muscles were significantly different between the Kettle bell and control groups according to the measurement points with the exception of the right lateral gastrocnemius muscle (p<0.05). Conclusion: These findings suggest that Kettle bell swing exercise can have positive effects on the development of lower limb muscles.

Effects of the Patellar Tendon Strap on Kinematics, Kinetic Data and Muscle Activity During Gait in Patients With Chronic Knee Osteoarthritis

  • Eun-Ji Lee;Ki-Song Kim;Young-In Hwang
    • Physical Therapy Korea
    • /
    • v.30 no.2
    • /
    • pp.110-119
    • /
    • 2023
  • Background: Osteoarthritis is a common condition with an increasing prevalence and is a common cause of disability. Osteoarthritic pain decreases the quality of life, and simple gait training is used to alleviate it. Knee osteoarthritis limits joint motion in the sagittal and lateral directions. Although many recent studies have activated orthotic research to increase knee joint stabilization, no study has used patellar tendon straps to treat knee osteoarthritis. Objects: This study aimed to determine the effects of patellar tendon straps on kinematic, mechanical, and electromyographic activation in patients with knee osteoarthritis. Methods: Patients with knee osteoarthritis were selected. After creating the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), leg length difference, Q-angle, and thumb side flexion angle of the foot were measured. Kinematic, kinetic, and muscle activation data during walking before and after wearing the orthosis were viewed. Results: After wearing the patellar tendon straps, hip adduction from the terminal stance phase, knee flexion from the terminal swing phase, and ankle plantar flexion angle increased during the pre-swing and initial swing phases. The cadence of spatiotemporal parameters and velocity increased, and step time, stride time, and foot force duration decreased. Conclusion: Based on the results of this study, the increase in plantar flexion after strap wearing is inferred by an increase due to neurological mechanisms, and adduction at the hip joint is inferred by an increase in adduction due to increased velocity. The increase in cadence and velocity and the decrease in gait speed and foot pressure duration may be due to joint stabilization. It can be inferred that joint stabilization is increased by wearing knee straps. Thus, wearing a patellar tendon strap during gait in patients with knee osteoarthritis influences kinematic changes in the sagittal plane of the joint.

A 2.5Gb/s 2:1 Multiplexer Design Using Inductive Peaking in $0.18{\mu}m$ CMOS Technology (Micro spiral inductor를 이용한 2.5Gb/s급 2:1 Multiplexer 설계)

  • Kim, Sun-Jung;Choi, Jung-Myung;Burm, Jin-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.22-29
    • /
    • 2007
  • A 2.5Gb/s 2:1 multiplexer(MUX) IC using $0.18{\mu}m$ CMOS was designed and fabricated. Inductive peaking technology was used to improve the performance. On-chip micro spiral inductor was designed to maximize the inductive peaking effect without increasing the chip area much. The designed 4.7 nH micro-spiral inductor was $20\times20{\mu}m2$ in size. 2:1 MUX with and without micro spiral inductors were compared. The rise and fall time was improved more than 23% and 3% respectively using the micro spiral inductors for 1.25Gb/s signal. For 2.5 Gb/s signal, fall and rise time was improved 5.3% and 3.5% respectively. It consumed 61mW and voltage output swing was 1$180mV_{p-p}$ at 2.5Gb/s.

Anti-swing and Position Control of Crane Using Intelligent Technique (지능제어를 이용한 크레인의 진동 및 위치 제어에 관한 연구)

  • Lee, Eun-Gyung;Lee, Suk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.524-527
    • /
    • 1995
  • In most cases, a crane is controlled by an open-loop technique. That is, the controller tries to follow a given velocity profile that is designed to minimize the swing of rope and the transfer time. But such a system is not capable of handling various disturbances such as changing rope length and wind effect. In order to overcome this kind of difficulty, this research focuses on the design of a feedback controller using intelligent techniques such as fuzzy logic and neural network. These intelligent techniques has been emplyoyed in order to represent human knowledge and to imitate human learning. The deveped controllers have been evaluated via computer simulation

  • PDF

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF

Analysis and Control of Low Frequency Oscillation using TCSC Small Signal Model by Control of Firing Angles (TCSC의 소신호 모형을 이용한 점호각 제어에 의한 저주파 진동 감쇠 효과 해석 및 제어)

  • Kim, Tae-Hyun;Seo, Jang-Cheol;Park, Jong-Keun;Moon, Seung-Ill;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.120-124
    • /
    • 1995
  • TCSC can not only increase power flow but also damp low frequency oscillation by controlling firing angles of thyristors. But, a model considering voltage, current firing angles is not derived. This paper used a small signal model considirng these variables which was derived in paper [1]. TCSC model is combined with swing equation. Being related to rotor angles and firing angles of thyristors, current and synchronizing torque coefficient is reformulated. Because firing angles of thyristors can be controlled only twice within one period, swing equation is transformed to discrete time model. It is shown that low frequency oscillation can be damped by controlling firing angles in one machine infinite bus power system.

  • PDF

A measurement of piston surface temperature by using instantaneous temperature measuring probe (순간온도 계측 프로브를 사용한 피스턴 표면 온도측정)

  • 이성열;이영조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-66
    • /
    • 1990
  • In order to measure the piston surface temperature and heat flux, autors have developed the measuring system with an instantaneous temperature probe. Such the instantaneous temperature probes were embodied into the top of piston for measurement and L-link system, designed to fit the test engine, extracts the thermocouple wires from the piston outside of engine employing a mechanical linkage. Then the instantaneous surface temperature was measured to calculate the heat flux flowing into the top surface of piston in a spark ignition engine. As a result, the following phenomena have been obtained through the study. 1) It is found that the time response and durability of temperature probe with a thin film thickness 10um and mechanical linkage with thermocouple wire extraction is sufficient at this experiment. 2) For the quantitative effect of variation in engine speed, the temperature swing and heat flux on the top of piston increase with increasing the engine speed. 3) It is proved that the temperature swing and heat flux decrease with distance from spark plug.

  • PDF

Influence of Channel Length on the Performance of Poly-Si Thin-Film Transistors (다결정 실리콘 박막 트랜지스터의 성능에 대한 채널 길이의 영향)

  • 이정석;장창덕;백도현;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.450-453
    • /
    • 1999
  • In this paper, The relationship between device performance and channel length(1.5-50$\mu$m) in polysilicon thin-film transistors fabricated by SPC technology was Investigated by measuring electric Properties such as 1-V characteristics, field effect mobility, threshold voltage, subthreshold swing, and trap density in grain boundary with channel length. The drain current at ON-state increases with decreasing channel length due to increase of the drain field, while OFF-state current (leakage current) is independent of channel length. The field effect mobility decrease with channel length due to decreasing carrier life time by the avalanche injection of the carrier at high drain field. The threshold voltage and subthreshold swing decrease with channel length, and then increase in 1.5 $\mu$m increase of increase of trap density in grain boundary by impact ionization.

  • PDF

Kinematic Analysis According to the Intentional Curve Ball at Golf Driver Swing (골프 드라이버 스윙 시 의도적인 구질 변화에 따른 운동학적 분석)

  • Hong, Soo-Young;So, Jae-Moo;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • The purpose of This study's aim is to examine the difference in the changes of body segment movement, variables for ball quality, and carry at golf driver swing according to the ball quality using comparative analysis. Regarding the impact variables according to the ball quality using the track man and carry, club speed was the fastest at draw shot, ball speed was the fastest at straight shot, and smash factor was the lowest at draw shot. About the vertical launch angle, the fade shot showed the highest launch angle while the max height of the ground and ball was the highest at fade shot. And carry was the longest at draw shot. For the flight time, it was the longest at draw shot. The landing angle was the largest at fade shot. About the club head position change and trajectory, at the overall event point, the fade shot drew a more outer trajectory at the point of the follow through(E6) than the straight or draw shot. Regarding the angular speed of shoulder rotation, at the overall event point, the fade shot showed the greatest angular speed change in the follow through(E6). Also, about the angular speed of pelvic rotation, at the overall event point, the draw shot showed the greatest angular speed change at the point of down swing(E4). Concerning the stance angle change, both straight and fade shots were open as the concept of open stance whereas the draw shot was close as that of close stance. Regarding the previous study, the most important factor of deciding Ball Quality is the club face angle's open and close state at Impact. In short, the Ball Quality and carry were decided by this factor.

The Biomechanical Analysis of Various Vertical Jumps According to Gender of High School Students (고등학생의 성별에 따른 수직점프 유형별 운동역학적 분석)

  • Lee, Haeng-Seob;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.153-164
    • /
    • 2006
  • This thesis is focused on kinematical and kinematical analysis of each types(Type #1 : use both swing of arm and reaction of knee, Type #2 : Use only swing of arm, not reaction of knee, type #3 : Neither use of swing of arm nor reaction of knee) of vertical jumps according to gender of High School Students. The subjects of this study is High School Student's male and female, 5 each, for analyzation of actions 3D image analyzing and GRF machines were used. To identify the differences of analyzed variables, an independent T-test on gender, an One-way ANOVA on types were used. Summery of the results are stated below. first of all, female students showed differences on Hip Joint angle and Joint Velocity from male students on Kimentic Variable. So training on hip joint force of flection and extension of female students is needed. Both male and female students showed relatively bigger result of arm's Angular Momentum than thigh's Angular Momentum on Type #1. This is regarded of faster Joint Velocity of Arm. Bigger result of female students of arm's contribution on Type #1 than male students can be said as Female student's weaker hip joint's angular muscle force than male student's, so the dependency of arm is heavier than male students. In Kinetic variable, GRF showed bigger result on male students than female students. So female students need to enhance joint's torque to increase GRF than male students. On vertical Impulse, high numeric data of last two reaction of tiptoe of vertical GRF and antero-posterior GRF helped increasing impulse by extending action time of force.