• Title/Summary/Keyword: Swing Arm

Search Result 87, Processing Time 0.026 seconds

Study on Fabrication of a Large Concave Mirror Surface Using a Swing-Arm Type Profilometer (스윙암 방식의 형상 측정기를 이용한 대형 반사경의 정밀가공에 관한 연구)

  • Lee, Ki-Am;Kim, Ock-Hyun;Lee, Eung-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.41-46
    • /
    • 2008
  • Generally optical components are fabricated by grinding, lapping and polishing processes. Those processes take long time to obtain optical high surface quality. In the case of large optical components, the on-machine measurement is strongly recommended because the workpiece is fragile and difficult to set up for fabricating and measuring. This paper is concerned about a swing-arm mechanism which can be used for on-machine measurement of a surface profile with a sensing probe end-effect, and also for grinding or lapping the surface with a corresponding tool. The measuring accuracy and uncertainty using a swing arm type profilometer have been studied. The experimental results show that this method is useful specially in lapping process with the accuracy of $5{\mu}m$. Those inspection data are provided for correcting the residual figuring error in next processes.

  • PDF

Design of a Small Form Factor Swing Arm type Actuator using Design of Experiments (실험계획법을 이용한 초소형 스윙암 액추에이터의 설계)

  • Park Chul;Yoo Jeong-Hoon;Park No-Ceol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.813-819
    • /
    • 2006
  • The state of the art for the design of swing ann actuators for optical disc drives is to obtain the high efficient dynamic characteristics, especially for the small size for the mobile information devices, It is affected by the need of consumers who wants the portable digital storage devices maintaining highly functional and removable characteristics of the optical disk drive (ODD). As a necessary consequence, the need of the small form factor (SFF) storage device has been considered as an important part in the information storage technology. In this paper. we suggest a new conceptual miniaturized swing arm type actuator that has high efficient dynamic characteristics as well as satisfies the sensitivity and the heat emission requirements for the SFF-ODD. It also uses a tracking electromagnetic (EM) circuit for a focusing motion. Due to the size constraint, the thermal problem of optical head arises; therefore, we design an efficiently heat emitted structure for the actuator.

  • PDF

Arm Swing Asymmetry and Effect of Auditory Cues on Amplitude in the Patients with Parkinson's Disease (파킨슨병 환자의 상지 스윙의 비대칭과 청각신호에 따른 보행 시 진폭에 미치는 영향)

  • Son, Ho-Hee;Kim, Eun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.344-350
    • /
    • 2013
  • A recent study reporting significantly reduced symmetry in arm swing amplitude in early Parkinson's disease (PD), as measured during gait by auditory cues velocity, led to this investigation of arm swing symmetry and amplitude in PD. The subjects were 14 elderly patients diagnosed with PD. Patients were measured of three conditions performed in random order: slow, general, fast. The auditory cue velocity consisted of a metronome beat ${\pm}20%$ than the subject's general gait speed. Using a motion analysis measurement system, changes in kinematic variables were compared to arm swing analysis. PD groups showed a highly significant reduction of the arm swing amplitude on the more affected body side(MAS)(p<.05). Comparison between the auditory cues velocity, there was a significant increase arm swing amplitude in fast velocity gait than slow and general velocity gait(p<.05). We conclude that motion analysis during gait by auditory cues velocity allows reliable investigation of asymmetric arm movements in early PD patients which attenuate with ongoing disease. The measurement of limb kinematics during gait by auditory cues velocity can broaden our methodological line-up for the analysis of complex motor programs in movement disorders.

Biomechanical Analysis of a Bowling Swing (볼링 투구동작의 운동역학적 연구)

  • Lee, Hae-Myeong;Lee, Sang-Cheol;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.53-63
    • /
    • 2006
  • The general objective of this study was to investigate biomechanical characteristics of bowling swing using three-dimensional cinematography. This study focused specifically on movements of the upper body segments during a bowling swing. Eight elite female bowling players participated in this study. Subjects performed bowling swing and their performance was sampled at 60 frame/sec using two high-speed video cameras with a synchronizer. After digitizing images from two cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 12 body segments (20 joint reference makers). The obtained three-dimensional coordinates were fed to a custom-written kinematic and kinetic analyses program (LabView 6.1, National Instrument, Austin, TX, USA). The analyses determined the linear and angular kinematic variables of the body segments with which joint force and torque of the lower and upper trunks and the shoulder were estimated based on the Newton-Euler equations. It was found that during the bowling swing the peak linear velocities of the body segments were reached in sequence the trunk, the shoulder, the elbow, the wrist, and the bowl. This result indicates that linear momentum of the lower body and the trunk transmits to the arm segment during the bowling swing. The joint torques of the torso and the arm occurred almost simultaneously, indicating that bowling swing seem to be a push-like motion, rather than a proximal-distal sequence motion in which many of throwing motions are categorized. The ultimate objective of the bowling swing is to release a heavy-weight bowl with power and consistency. Therefore, the bowling swing observed in this study well agrees with that bowlers use the stepping to increase the linear velocity of the bowl, the simple pendulum system and the push-like segmental motion in the torso and the arm segment to enhance the power at the release of the bowl.

A Study on Pad Profile Variation using Kinematical Analysis on Swing Arm Conditioner (스윙 암 컨디셔너의 기구학적 해석을 통한 CMP 패드 프로파일 변화에 관한 연구)

  • Oh, Ji-Heon;Lee, Sang-Jik;Lee, Ho-Jun;Cho, Han-Chul;Lee, Hyun-Seop;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.963-967
    • /
    • 2008
  • There are many factors to affect polishing performance normally in chemical mechanical polishing (CMP) process. One of the factors is a pad profile. A pad profile has not been considered as a significant factor. However, a pad profile is easily changed by conditioning process in CMP, and then changed pad profile affects polishing performance. Therefore, understanding how the pad profile is changed by conditioning process is very important. In this paper, through the simulation based on kinematic analysis, the variation of the pad profile was described in accordance with difference condition of conditioning process. A swing-arm type conditioner was applied in this simulation. A swing-arm type conditioner plays a role of generating asperities on pad surface. The conditions of conditioing process to get uniform removal were also investigated by comparing the simulation with the experiment.

Design of Swing Arm Type's for Small Sized ODD (초소형 광디스크 드라이브를 위한 스윙암 타입 엑추에이터 설계)

  • Oh, Je-Seung;Park, Se-June;Lee, Dong-Ju;Jung, Ho-Seop;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.70-74
    • /
    • 2004
  • There are many researches being in process to develop the information storage devices applying to the portable devices recently. Based on this need, the information storage devices have to be satisfied with the fast access time, the robustness of the system, high data transfer rate and lower media price. The total size of the drive must design to adapt the portable devices such as CF II card or PC II card size. This paper proposes the swing arm type actuator to insert the designed actuator in the drive of the CF II size. Hereafter the research will be going on to be suitable to the physical standard and design the focus magnetic circuit newly. The swing arm type actuator including this circuit is designed to have the dynamic characteristic satisfying the mechanical specification as well as the BD 1x. Finally, the adaptability to the portable devices was demonstrated by the finite element analysis and optimization of structural part.

  • PDF

A New Arm Swing Walking Pattern-based Walking Safety System (새로운 팔 스윙 보행 패턴 기반 보행 안전 시스템)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.88-95
    • /
    • 2020
  • In this paper, we propose a new arm swing walking pattern-based walking safety system for safe walking of elderly pedestrians. The proposed system is a walking safety system for elderly pedestrians using haptic-based devices such as smart bands and smart watches, and arm swing-based walking patterns to solve the problem that it is difficult to recognize the fall situation of pedestrians with the existing walking patterns of lower limb movements. Use. The arm swing-based walking pattern recognizes the number of steps and the fall situation of pedestrians through the swing of the arm using the acceleration sensor of the device, and creates a database of the location of the fall situation to warn elderly pedestrians when walking near the expected fall location. It delivers a message to provide pedestrian safety to the elderly. This system is expected to improve the safe walking rights and environment of the elderly.

A Swing-Arm On-Machine Inspection Method for Profile Measurement of Large Optical Surface in Lapping Process

  • Sung In Kyoung;Oh Chang Jin;Lee Eung Suk;Kim Ock Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1576-1581
    • /
    • 2005
  • Generally, the optical components are fabricated by grinding, lapping, and polishing. And, those processes take long time to obtain such a high surface quality. Therefore, in the case of large optical component, the on-machine inspection (OMI) is essential. Because, the work piece is fragile and difficult to set up for fabricating and measuring. This paper is concerned about a swing-arm method for measuring surface profile of large optical concave mirror. The measuring accuracy and uncertainty for suggested method are studied. The experimental results show that this method is useful specially in lapping process with the accuracy of $3\~5\;{\mu}m$. Those inspection data are provided for correcting the residual figuring error in lapping or polishing processes.

Kinematic analysis of Ire hockey slap shot (아이스 하키 슬랩 샷(slap shot)의 운동학적 분석)

  • Moon, Gon-Sung;Park, Chong-Rul
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.13-28
    • /
    • 2003
  • The purpose of this study was to analyze the kinematic characteristics of Ice hockey slap shot. The subjects of this study were four professional ice hockey players. The reflective markers were attached on the anatomical boundary line of body and the subjects were asked to perform the shot. Ariel Performance Analysis System was used to capture and digitize the shooting image, the data were analyzed by LabView 6i. The results were as fellows. 1. The period of the back swing phase was $0.542{\pm}0.062sec$, the down swing phase was $0.28{\pm}0.056sec$ and the total swing time was $0.825{\pm}0.017sec$ 2. The maximum linear velocity of the stick blade for x direction was shown after 7% of impact, for y, z direction were shown before 2%, 8% of Impact. 3. The maximum velocity of each segment for the left arm was $2.35{\pm}0.05m/s$ in the upper arm, $3.56{\pm}0.34m/s$ in the forearm, $4.75{\pm}0.67m/s$ in the hand. 4. The maximum velocity of each segment for the right arm was $4.67{\pm}0.43m/s$ in the upper arm, $7.22{\pm}0.69m/s$ in the forearm, $9.42{\pm}0.89m/s$ in the hand. 5. The angle of left elbow was generally flexed from the ready stance to the impact and was $82.26{\pm}3.45^{\circ}$ the moment of Impact. 6. The angle of the left shoulder was increased ut the down swing phase and was $78.74{\pm}4.78^{\circ}$ on the moment of impact. 7. The angle of the right shoulder was decreased in the down swing phase and increased before the impact. and the angle was $51.28{\pm}3.54^{\circ}$ on the moment of impact.

The Biomechanical Analysis of Various Vertical Jumps According to Gender of High School Students (고등학생의 성별에 따른 수직점프 유형별 운동역학적 분석)

  • Lee, Haeng-Seob;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.153-164
    • /
    • 2006
  • This thesis is focused on kinematical and kinematical analysis of each types(Type #1 : use both swing of arm and reaction of knee, Type #2 : Use only swing of arm, not reaction of knee, type #3 : Neither use of swing of arm nor reaction of knee) of vertical jumps according to gender of High School Students. The subjects of this study is High School Student's male and female, 5 each, for analyzation of actions 3D image analyzing and GRF machines were used. To identify the differences of analyzed variables, an independent T-test on gender, an One-way ANOVA on types were used. Summery of the results are stated below. first of all, female students showed differences on Hip Joint angle and Joint Velocity from male students on Kimentic Variable. So training on hip joint force of flection and extension of female students is needed. Both male and female students showed relatively bigger result of arm's Angular Momentum than thigh's Angular Momentum on Type #1. This is regarded of faster Joint Velocity of Arm. Bigger result of female students of arm's contribution on Type #1 than male students can be said as Female student's weaker hip joint's angular muscle force than male student's, so the dependency of arm is heavier than male students. In Kinetic variable, GRF showed bigger result on male students than female students. So female students need to enhance joint's torque to increase GRF than male students. On vertical Impulse, high numeric data of last two reaction of tiptoe of vertical GRF and antero-posterior GRF helped increasing impulse by extending action time of force.