• Title/Summary/Keyword: Swarm UAV

Search Result 22, Processing Time 0.022 seconds

A study on the security threat and security requirements for multi unmanned aerial vehicles (무인기 군집 비행 보안위협 및 보안요구사항 연구)

  • Kim, Mansik;Kang, Jungho;Jun, Moon-seog
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.195-202
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) have mostly been used for military purposes but with the progress in ICT and reduced manufacturing costs, they are increasingly used for various private services. UAVs are expected to carry out autonomous flying in the future. In order to carry out complex tasks, swarm flights are essential. Although the swarm flights has been researched a lot due to its different network and infrastructure from the existing UAV system, There are still not enough study on security threats and requirements for the secure swarm flights. In this paper, to solve these problems, UAV autonomous flight technology is defined based on US Army Corps of Engineers (USACE) and Air Force Research Laboratory (AFRL), and swarm flights and security threat about it are classified. And then we defined and compared security requirements according to security threats of each swarm flights so as to contribute to the development of secure UAC swarm flights in the future.

Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs (소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Cho, Seong-Beom;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.

Control of Multiple UAV's based on Swarm Intelligence (무리지능을 이용한 복수 무인기 제어)

  • Oh, Soo-Hun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.141-152
    • /
    • 2009
  • The simultaneous operation of multiple UAV's makes it possible for us to raise the mission accomplishment and cost efficiency. For this we need an easily scalable control algorithm, and swarm intelligence having the characteristics such as flexibility, robustness, decentralized control and self-organization comes into the spotlight as a practical substitute. In this paper the features of swarm intelligence are described, and various research results are introduced which show that the application of swarm intelligence to the control of multiple UAV's enables the missions of surveillance, path planning, target tracking and attack to be accomplished efficiently by simulations and tests.

  • PDF

Fast Video Data Encryption for Swarm UAVs Using Hybrid Crypto-system (하이브리드 암호시스템을 이용한 군집 영상의 고속 암호화)

  • Cho, Seong-Won;Kim, Jun-Hyeong;Chae, Yeo-Gyeong;Joung, Yu-Min;Park, Tae-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.602-609
    • /
    • 2018
  • This paper proposes the hybrid crypto-system for fast video data encryption of UAV(Unmanned Aerial Vehicle) under the LTE(Long-Term Evolution) wireless communication environment. This hybrid crypto-system is consisted of ECC(Elliptic Curve Cryptography) public key algorithm and LEA(Light-weight Encryption Algorithm) symmetric key algorithm. ECC is a faster public key algorithm with the same security strength than RSA(Rivest Shamir Adleman), and Korean standard LEA with the same key size is also a faster symmetric key algorithm than AES(Advances Encryption Standard). We have implemented this hybrid crypto-system using OpenSSL, OpenCV and Socket programs under the Swarm 8-UAV. We have shown the efficient adaptability of this hybrid crypto-system for the real-time swarm UAV through the experiments under the LTE communication environment.

Multi-UAV Formation Algorithm Based on Distributed Control Using Swarm Intelligence (군집 지능을 이용한 분산 제어 기반 대형 형성 알고리즘)

  • Kim, Moon-Jung;Kim, Jeong-Hun;Kim, Hyo-Jung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.523-530
    • /
    • 2022
  • Since the Multi-UAV system for various missions is more complex than a single UAV, an efficient formation control method is required. In wide-area search mission, there is a need for a distributed control for flexible formation that has a low burden of communication and computation and enables autonomous formation between UAVs. This paper proposes a flexible formation operation method that considers the swarm formation, the bank alignment formation, and the formation movement to expand the scan area and improve search performance. The algorithm has a vibration characteristic of the second-order system for a relative distance and can design an algorithm through parameter tuning. In addition, we converted control commands to suit conventional UAV systems and demonstrated the performance of algorithms for a formation and movement of a formation through simulation.

UAV Swarm Flight Control System Design Using Potential Functions and Sliding Mode Control (포텐셜 함수와 슬라이딩 모드 제어기법을 이용한 무인기 군집비행 제어기 설계)

  • Han, Ki-Hoon;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.448-454
    • /
    • 2008
  • This paper deals with a behavior based decentralized control strategy for UAV swarming utilizing the artificial potential functions and the sliding mode control technique. Individual interactions for swarming behavior are modeled using the artificial potential functions. The motion of individual UAV is directed toward the negative gradient of the combined potential. For tracking the reference trajectory of UAV swarming, a swarming center is considered as the object of control. The sliding-mode control technique is adopted to make the proposed swarm control strategy robust with respect to the system uncertainties and the varying mission environment. Numerical simulation is performed to verify the performance of the proposed controller.

Development of AR.Drone's Controller for the Indoor Swarm Flight (실내 군집비행을 위한 AR.Drone의 제어기 개발)

  • Cho, Dong-Hyu;Moon, SungTae;Rew, DongYoung
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.153-165
    • /
    • 2014
  • Multi-rotor UAVs are utilized in various fields because of the advantages such that a hovering capability such as helicopters, a simple structure and a relatively high thrust. Recently, AR.Drone manufactured by Parrot is easily operated by beginner due to its internal stabilization loop in the on-board computer and it can be easily applied on various researches for the multi-rotor UAVs by providing an SDK(Software Development Kit). Further this platform can be suitably used for application to swarm flight since it is low cost and relatively small. Therefore, in this paper, we introduce the development process of the controller for indoor swarm flight by using the AR.Drone.

Small UAV Swarm Mobility Control to Support Target Tracking (소형 무인 비행체 집단의 목표물 추적 기법)

  • Choi, Hyo Hyun;Nam, Su Hyun;Choi, Myungwhan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.251-252
    • /
    • 2012
  • 본 논문에서는 UAV(Unmanned Aerial Vehicle)을 이용하여 목표물을 찾고 목표물의 위치가 멀거나 목표물이 이동 시에도 기지국까지 지속적인 통신 연결을 제공하기 위해 UAV 집단을 제어하는 방안을 제안한다. 기존의 통신 시설을 이용할 수 없으며, UAV들 간에만 무선 랜 통신이 가능한 전시상황이나 특수 재난 상황에서 사용되는 것을 가정하였다. 제안 방안은 UAV들이 탐색지역 내에 목표물을 찾은 후에 목표물에 대한 정보를 기지국까지 전달하기 위하여 UAV들을 이동시킨다. 목표물이 먼 곳에 위치할 시에는 UAV들이 기지국까지의 통신 연결을 주기적이라도 유지하기 위해 UAV가 다른 UAV의 통신 범위까지 이동하여 정보를 전달하고 원래 위치로 복귀하는 방안과, 목표물이 이동할 때 목표물을 추적하며 기지국과의 연결성을 유지하는 방안을 제안한다. 이와 같은 과정들은 NS-2를 사용한 모의실험을 통하여 제안되는 기법을 검증하고 성능을 평가한다.

  • PDF

Optimal Surveillance Trajectory Planning for Illegal UAV Detection for Group UAV using Particle Swarm Optimization (불법드론 탐지를 위한 PSO 기반 군집드론 최적화 정찰궤적계획)

  • Lim, WonHo;Jeong, HyoungChan;Hu, Teng;Alamgir, Alamgir;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.382-392
    • /
    • 2020
  • The use of unmanned aerial vehicle (UAV) have been regarded as a promising technique in both military and civilian applications. Nevertheless, due to the lack of relevant and regulations and laws, the misuse of illegal drones poses a serious threat to social security. In this paper, aiming at deriving the three-dimension optimal surveillance trajectories for group monitoring drones, we develop a group trajectory planner based on the particle swarm optimization and updating mechanism. Together, to evaluate the trajectories generated by proposed trajectory planner, we propose a group-objectives fitness function in accordance with energy consumption, flight risk. The simulation results validate that the group trajectories generated by proposed trajectory planner can preferentially visit important areas while obtaining low energy consumption and minimum flying risk value in various practical situations.

Research of Small Fixed-Wing Swarm UAS (소형 고정익 무인기 군집비행 기술 연구)

  • Myung, Hyunsam;Jeong, Junho;Kim, Dowan;Seo, Nansol;Kim, Yongbin;Lee, Jaemoon;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.971-980
    • /
    • 2021
  • Recently popularized drone technologies have revealed that low-cost small unmanned aerial vehicles(UAVs) can be a significant threat to prevailing power by operating in group or in swarms. Researchers in many countries have tried to utilize integrated swarm unmanned aerial system(SUAS) in the battlefield. Agency for Defense Development also identified four core technologies in developing SUAS: swarm control, swarm network, swarm information, and swarm collaboration, and the authors started researches on swarm control and network technologies in order to be able to operate vehicle platforms as the first stage. This paper introduces design and integration of SUAS consisting of small fixed-wing UAVs, swarm control and network algorithms, a ground control system, and a launcher, with which swarm control and network technologies have been verified by flight tests. 19 fixed-wing UAVs succeeded in swarm flight in the final flight test for the first time as a domestic research.