• Title/Summary/Keyword: Swamp

Search Result 165, Processing Time 0.02 seconds

Rethinking of Quaternary deposits and implication of rice seeds in Cheongju Sorori Site, Korea (청주 소로리 유적의 제4기 퇴적층과 볍씨 출토의 의미 재고찰)

  • Ju Yong Kim;Dong-Yoon Yang;Sangheon Yi;Wook-Hyun Nahm
    • The Korean Journal of Quaternary Research
    • /
    • v.31 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • The age of the Sorori old fluvial deposits is assumed as old as Last Interglacial(MIS 5) when appying the thalassostatic terrace formation in mid- to downstream Keum river basin, while the young fluvial deposits are interpreted to be formed since the post-LGM(last glacial maximum), including both the Bølling-Allerød (B/A) Interstadial(12,700~14,700 cal-yrBP), and the Younger Dryas Stadial(11,700~12,900 cal-yrBP). The wild rice seed like Oryza rufipogon found in the middle organic muds of the young fluvial deposits dated after about 15,000 cal-yrsBP, when the transition from the subalpine conifer forest to the deciduous broad-leaved forest was conspicuously evidenced in the upper part of OC-2 palynofloral zone of the in Cheonju Sorori site, In particular the OC-2 palynofloral zone ranging towards the upper part of middle organic muds(peaty muds) is interpreted to be formed in the B/A Interstadial. It is regarded that Cheongju Sorori rice seeds are associated with warm palynological evidences and backswamp insects during the Lastest Glacial, showing appearance of relatively warm climate similar to the present.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Typological Characteristics of Waterscape Elements from the Chapter 「Sancheon」 of the Volumes Gyeongsang-province in 『Sinjeung Donggukyeojiseungram』 (『신증동국여지승람』의 경상도편 「산천(山川)」 항목에 수록된 수경(水景) 요소의 특징)

  • Lim, Eui-Je;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.2
    • /
    • pp.1-15
    • /
    • 2016
  • This study aims at the consideration of the usages of traditional waterscape elements, which are difficult to define their concepts and their differences and it has been proceeded mainly with analysis of literature. It elicited various waterscape types by extracting the place names associated with the watersacpe elements from the chapter "Sancheon" of the volumes Gyeongsang-province in "Sinjeung Donggukyeojiseungram", which is a government-compiled geography book in the early period of Joseon Dynasty, and drew the features of each waterscape element by interpreting the dictionary definition and the original text and studying the similar examples. The results of study are drawn as follows. 1. The chapter "Sancheon" includes 22 types of waterscape elements and they are classified by means of locations and water-flow forms: River Landscape, Lake & Pond Landscape, Coast landscape. 2. River landscape maintaining constant natural water-flow constitutes the linear type, related to the class of stream, which includes 'Su(water)', 'Gang(river)', 'Cheon(stream)' and 'Gye(brook)' and the dotty type, created by the nature of trenched meander rivers, which includes 'Tan(beach)', 'Roe(rapids)', 'Pok(waterfall)' and 'Jeo(sandbank)'. 3. Lake & Pond Landscape forming water collected in a certain area constitutes 'Ho(lake)', which is a broad and calm spot created around mid and down stream of river, 'Yeon(pool)', 'Dam(pond)', 'Chu(small pond)', which are naturally created on the water path around mid and down stream of river, 'Ji(pond)', 'Dang(pond)', 'Taek(swamp)', which is collected on a flatland and 'Cheon(spring)', 'Jeong(spring)' which means gushing out naturally. 4. Coast Landscape includes 'Ryang', 'Hang', which are the space between land and an island or islands, 'Got(headland)' which sticks out from the coast into the sea, 'Jeong(sandbank)' which forms sandy beaches and 'Do' which shows high appearance frequency by reflecting the geographical importance of islands. This study comprehended the diversity of traditional waterscape elements and drew the fact that they are the concept reflecting the differentiated locational, scenic and functional features. That way, it understood the aesthetic sense on nature, which ancestors had formed with the interests in natural landscape and the keen observation on it, became the basic idea elucidating the characteristic on Korean traditional gardens, which minimize the artificiality and make nature the subject.

The Late Quaternary Environmental Change in Youngyang Basin, South Eastern Part of Korea Penninsula (第四紀 後期 英陽盆地의 自然環境變化)

  • Yoon, Soon-Ock;Jo, Wha-Ryong
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.447-468
    • /
    • 1996
  • The peat layer was deposited on the abandoned channel of incised meander of River Banbyuncheon with 7 meter thickness on Youngyang basin. The late Quaternary environmental change on the study area was discussed based on pollen anaalysis and radiocarbon-dating from this peat. The swamp which was caused to sediment the peat, was produced by which the fan debris from the adjacent slope damed the waterflow on the abandoned channel. The peat layer contains continuous vegetational history from 60,000y.B.P. to Recent. The peat deposit was divided into two layers by the organic thin sand horizon, which was sedimented at one time and made unconformity between the lower decomposed compact peat layers and the upper fresh fiberous peat layer. As the result of the pollen analysis, both peat layers from the two boring sites, Profile YY1 and Profile YY2 were divided into five Pollenzones(Pollenzone I, II, III, IV and V) and 12 Subzones which were mainly corresponded by the AP (Arboreal Pollen)-Dominance. The two profiles have some differences on the sedimentary facies and on the pollen composition as well. Therefore these were in common with the Pollenone III, however the Pollenzone I and II existed only on the Profile YY1 and the Pollenzone IV and V existed only on the Profile YY2. The lower layer containing the Pollenzone I, II and III revealed vegetational records of Pleistocene, which was characterized as tundra-like landscape and thin forested landscapes. It represented the NAP (Non-Arboreal Pollen)-period with a plenty of Artemisia sp., Sanguisorba sp., Umbelliferae, Gramineae and Cyperaceae. However a relatively high proportion of the boreal trees with Picea sp., Pinus sp. and Betula sp. as AP was observed in the lower layer. The upper layer contained the Pollenzone IVb and V and vegetational history in Holocene which was characterized by thick forested landscape with rich tree pollen. It represented AP-period with plenty of Pinus sp. and Quercus sp. as temperate trees. The temperature fluctuation supposed from the vegetational records is as follows; the Pollenzone I(Betula-Dominance, about 57,000y.B.P.) represents relatively cold period. The Pollenzone II(EMW-Domi-nance, 57,000-43,000y.B.P.)represents relatively warm period. This period is supposed to be Interstadial, the transi-tional stage from Alt- to Mittel Wurm. The Pollenzone III(Butula-, Pinus- and Picea-Dominace in turns, 43,000-15,000y.B.P.) reproesents cold period which had been built from Mittel-to Jung Wurm. Especially the Subzone IIId represents the coldest period throughout the Pollenzone III. It is corresponds to Wurm Glacial Maximu. It is supposed that the mean temperature in July of this period was coller about 10${^\circ}$C than present. The Pollenzone IV and V represent the vegetational history of Holocene. Tilia, Quercus and Pinus were dominant in turns during this period. Subzone IVb and Pollenzone I and II at east coastal plain of Korean penninsula reported by JO(1979).

  • PDF

The Abuse and Invention of Tradition from Maintenance Process of Historic Site No.135 Buyeo Gungnamji Pond (사적 제135호 부여 궁남지의 정비과정으로 살펴본 전통의 남용과 발명)

  • Jung, Woo-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.2
    • /
    • pp.26-44
    • /
    • 2017
  • Regarded as Korea's traditional pond, Gungnamj Pond was surmised to be "Gungnamji" due to its geological positioning in the south of Hwajisan (花枝山) and relics of the Gwanbuk-ri (官北里) suspected of being components to the historical records of Muwang (武王)'s pond of The Chronicles of the Three States [三國史記] and Sabi Palace, respectively, yet was subjected to a restoration following a designation to national historic site. This study is focused on the distortion of authenticity identified in the course of the "Gungnamji Pond" restoration and the invention of tradition, whose summarized conclusions are as follows. 1. Once called Maraebangjuk (마래방죽), or Macheonji (馬川池) Pond, Gungnamji Pond was existent in the form of a low-level swamp of vast area encompassing 30,000 pyeong during the Japanese colonial period. Hong, Sa-jun, who played a leading role in the restoration of "Gungnamji Pond," said that even during the 1940s, the remains of the island and stone facilities suspected of being the relics of Gungnamji Pond of the Baekje period were found, and that the traces of forming a royal palace and garden were discovered on top of them. Hong, Sa-jun also expressed an opinion of establishing a parallel between "Gungnamji Pond" and "Maraebangjuk" in connection with a 'tale of Seodong [薯童說話]' in the aftermath of the detached palace of Hwajisan, which ultimately operated as a theoretical ground for the restoration of Gungnamj Pond. Assessing through Hong, Sa-jun's sketch, the form and scale of Maraebangjuk were visible, of which the form was in close proximity to that photographed during the Japanese colonial period. 2. The minimized restoration of Gungnamji Pond faced deterrence for the land redevelopment project implemented in the 1960s, and the remainder of the land size is an attestment. The fundamental problem manifest in the restoration of Gungnamji Pond numerously attempted from 1964 through 1967 was the failure of basing the restorative work in the archaeological facts yet in the perspective of the latest generations, ultimately yielding a replication of Hyangwonji Pond of Gyeongbok Palace. More specifically, the methodologies employed in setting an island and a pavilion within a pond, or bridging an island with a land evidenced as to how Gungnamji Pond was modeled after Hyangwonji Pond of Gyeongbok Palace. Furthermore, Chihyanggyo (醉香橋) Bridge referenced in the designing of the bridge was hardly conceived as a form indigenous to the Joseon Dynasty, whose motivation and idea of the misguided restoration design at the time all the more devaluated Gungnamji Pond. Such an utterly pure replication of the design widely known as an ingredient for the traditional landscape was purposive towards the aesthetic symbolism and preference retained by Gyeongbok Palace, which was intended to entitle Gungnamji Pond to a physical status of the value in par with that of Gyeongbok Palace. 3. For its detachment to the authenticity as a historical site since its origin, Gungnamji Pond represented distortions of the landscape beauty and tradition even through the restorative process. The restorative process for such a historical monument, devoid of constructive use and certain of distortion, maintains extreme intimacy with the nationalistic cultural policy promoted by the Park, Jeong-hee regime through the 1960s and 1970s. In the context of the "manipulated discussions of tradition," the Park's cultural policy transformed the citizens' recollection into an idealized form of the past, further magnifying it at best. Consequently, many of the historical sites emerged as fancy and grand as they possibly could beyond their status quo across the nation, and "Gungnamji Pond" was a victim to this monopolistic government-led cultural policy incrementally sweeping away with new buildings and structures instituted regardless of their original space, and hence, their value.