• Title/Summary/Keyword: Sustainable Buildings

Search Result 344, Processing Time 0.027 seconds

A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building (현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구)

  • Hwang, Suck-Ho;Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

A study on the proposal of environmental capacity criterion method for windows system in buildings (창호시스템의 환경성능평가기법 정립에 관한 연구)

  • Choi, Doo-Sung;Kim, Eun-Gyu;Cho, Kyun-Hyong
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 2004
  • This research investigates the life-cycle energy consumption of the windows used for the building's exterior cladding, and its environmental potential aspects by utilizing the LCA. The research scope has taken account of the entire life-cycle of the windows from the extraction of raw materials to its disposal, of which given sample building type is an apartment building. Results gained from the LCA of the windows as one of the steps in analysis reflects the current global interest and analysis trend towards the world's environmental issue on all fields of industry including the architectural industry, of which its newly established standards of architectural windows can further promote more environmentally sustainable factor compared to the previous analysis (focused more on energy efficiency assessment of the use stage).

Daylighting Performance of Topside Lighting Systems for Different Orientations (방위에 따른 정측창 시스템의 채광성능 평가)

  • Kong, Hyo-Joo;Lee, Jin-Seoung;Ahn, Hyun-Tae;Kim, Jeong-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • Daylighting is core of sustainable design in most buildings. Well-designed daylighting systems can significantly reduce or even eliminate the electric lighting loads during the day time, including air conditioning energy loads. Among window systems. the topside lights systems including monitor lighting, sawtooth lighting, sunscoop and, lightscoop is one of the most popular apparatus to improve the lighting quantity. Also they are important both in terms of energy savings and visual quality. The objective of this study is to analyse daylighting performance of topside lighting system for different orientations. Four types of topside lighting system were tested and comparpd: monitor lighting, sawtooth lighting, lightscoop and sunscoop. Totally 25 measuring points of illuminance on the horizontal plane were monitored from 09:00 to 17:00 on October 6, 2008. Agilent data logger and photometric sensors Li-cor were used. Comparisons with a light factor is discussed. The results found in this study would mean that there were no significant differences in light factor between three cases.

Predicting the CO2 Emission of Concrete Using Statistical Analysis

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jang, Min-Ho;Park, Hyo-Seon
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Accurate assessment of $CO_2$ emission from buildings requires gathering $CO_2$ emission data of various construction materials. Unfortunately, the amount of available data is limited in most countries. This study was conducted to present the $CO_2$ emission data of concrete, which is the most important construction material in Korea, by conducting a statistical analysis of the concrete mix proportion. Finally, regression models that can be used to estimate the $CO_2$ emission of concrete in all strengths were developed, and the validity of these models was evaluated using 24 and 35MPa concrete data. The validation test showed that the error ratio of the estimated value did not exceed a maximum of 5.33%. This signifies that the models can be used in acquiring the $CO_2$ emission data of concrete in all strengths. The proposed equations can be used in assessing the environmental impact of various construction structural designs by presenting the $CO_2$ emission data of all concrete types.

A Comparative Analysis for the Energy Performance of the Prefabricated Residential Modular Spaces (주거용 조립식 단위공간의 유형별 에너지성능 분석)

  • Park, Jongil;Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.87-94
    • /
    • 2017
  • Purpose: Prefabricated modular space such as a container construction has recently been interested unlike the conventional construction method, and their scale have expanded from small buildings such as cafes, houses and pensions to shopping centers, complex cultural spaces where shows and exhibitions are possible doing. In this way, the container is in the spotlight as an advantage such as mobility, flexibility, correspondence, economic efficiency, recyclability and so on. However, there are no specific guidelines and standard design methods in aspects of structural calculation, functional insulation and environmental configuration. Therefore, as the first step to resolve these problems, this study has focused on the field of environmental performance of container construction, presented appropriate guidelines and searched ways to improve performances. Method: For this study, seven types of the modular building were chosen and compared, and their energy performances have been analyzed using a proven simulation tool. Essential methodology and terminology were examined to estimate and judge their efficiency. Result: In conclusion, energy performances depend on specific configuration of combined unit spaces, and design guidelines cold be set up for promoting their use in the practical field.

Suggesting Solutions when Applying Building Information Modeling (BIM) to the Korean Construction Industry through Case Studies (사례 분석을 통한 국내 BIM 적용 문제점 및 대안 도출에 관한 연구)

  • Park, Jung-Wook;Kim, Sang-Chul;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.93-102
    • /
    • 2009
  • When faced with new projects, such as high-rise, complex, free-formed, and sustainable buildings, numerous participants in the building Industry use Building Information Modeling (BIM) technology. In 2009, the use of BIM spread to more contractors than eyer before. This paper aims to study the definition and characteristics of BIM, and to analyze Korean BIM application problems. Solutions for the application of BIM to the Korean Construction Industry suggested, by studying cases from developed counties and from Korea.

The Design of Eco-friendly Public Library by Applying Passive Architectural Design Techniques - Focused on the Sejong Municipal Public Library - (패시브 건축디자인기법에 의한 친환경 공공도서관 건축설계 - 세종시립도서관 계획안을 중심으로 -)

  • Park, Yeol;Choi, Jin-Hee
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.4
    • /
    • pp.27-34
    • /
    • 2019
  • Recently the architectural paradigm have been changing into eco-friendly architecture as an sustainable architecture. This social background encourages the development of various methods of building applicable for eco-friendly buildings in architectural design. Among them, passive architecture is an design approach for eco-friendly design that contrasts with technology-based methods through MEP for renewable energy. This study researches the Passive Architectural Design methodology with two points of view; Passive Architectural Design Techniques as a guideline, which defines the elements to consider for passive architecture, and the project of Sejong Municipal Public Library as a case, which is to analysis the architectural design process. The purpose of this study is to propose an eco-friendly public building based on the methodology which is suitable for passive architectural design. Finally, this study suggests that the eco-friendly public building design for passive architecture should consider from the early step of design process, such as concept and building form etc. What is important for the passive architecture is not how much building can produce the natural energy but how less building consumes it to maintain.

A Study on Application of Universal Design in School Building (학교건축의 유니버설디자인 적용에 관한 연구)

  • Seong, Ki-Chang
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.4
    • /
    • pp.59-67
    • /
    • 2018
  • Purpose: The concept of the Barrier-Free Design has steadily expanded into a basic principle of design, which can provide safe and convenient lives not only limited to the disables, elders, and pregnant women, but also to all members of the society. This is what we now know as the Universal Design. In other words, Barrier-Free Design for all is Architectural Approach of Universal Design. Thus, as a future-oriented alternative to school facilities according to social change, this study suggests basic direction of school building planning and concept of universal design considering school facilities characteristics. Methods: The characteristics of school facilities are understood from the perspective of Universal Design. In addition, a survey is conducted to identify the current state of school facilities. Result: Findings from this study are as follows. First, Universal Design of School Building is an integrated characteristic. Integration is intended to create and manage an integrated environment instead of an individual and one-time approach to installation and maintenance of convenience facilities. Second, It is a flexible characteristic to be sustainable. In other words, they aim to be selectable to respond to change. Third, It is a characteristic of accumulation of outstanding cases. This means that not only individual schools but also entire school spaces will be applied to Universal Design to form a virtuous circle of environment improvement. Implications: The results of this study may serve as a basic concept in the design of school buildings.

Analysis on the Reduction of Cooling Load and Improvement of Visual Environment by applying a Kinetic Shading Device in Summer (가변형 차양장치 적용에 따른 하절기 냉방부하 저감 및 빛환경 개선효과 분석)

  • Cha, Gi-Wook;Moon, Hyeun Jun;Kim, Ho-Jeong;Hong, Won-Hwa;Baik, Yong-Kyu
    • Journal of Korean Living Environment System
    • /
    • v.24 no.6
    • /
    • pp.810-823
    • /
    • 2017
  • The envelope is important for sustainable building. Recent commercial buildings are causing thermal degradation and cooling load due to the increase of the area of the windows. Therefore, this research studied kinetic shading system which can improve energy saving and visual environment in summer. For that, this study proposed new shading system and shape considering the orientation of the building and the location of the sun. Based on this, this study analyzed the effectiveness on energy reduction and improvement of visual environment by applying the kinetic shading system proposed in this study. As the results of this study, energy reduction rate was 35% in the east, 22.9% in the south, and 30.7% in the west depending on the application location. Also, as the result of the illuminance analysis, it was found that the effect of achieving uniformity ratio of illumination was considerable.

Suggestion for sustainable development of Korean traditional wooden Structure (Hanok)

  • Lee, Yunsub;Jin, Zhenhui;Seo, Nuri;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.159-166
    • /
    • 2017
  • Recently, the wooden structure has been revived again as an eco-friendly structure technique. It is the counterattack of the wood material, which has become more recognized as a finishing material pushed by the concrete material in the rapid growth after the Industrial Revolution. However, it is difficult to conclude that this is a tendency of the construction market in the whole country. Perhaps this is a tendency to appear more strongly in Korea. It could be seen by comparing the characteristics of the overseas construction market with Korean's and the advanced constructed case of large-scale wooden structures in overseas. National wooden buildings show own characteristics such as construction methods, materials, and member dimensions of wood structures by country, which could be seen as a result of continuously developing their own technology. However, in Korea, despite its unique wooden structure and technology (Hanok; Korean traditional housing), it has not been developed continuously and treated it only as a living building exhibit. This is evidenced by the fact that only one percent of the building is constructed with traditional wooden building technology. Therefore, there are various efforts to modernize the traditional wooden structure technology, but it still does not reach the level of advanced wooden technology abroad. The characteristics of the Korean wooden building market were analyzed in order to suggest ways to develop the Korean wood structure technology. The characteristics of Hanok construction were analyzed through quantitative criteria to define the main development tasks for Hanok development to propose the long-term development path.

  • PDF