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Abstract: Accurate assessment of CO2 emission from buildings requires gathering CO2 emission data of various construction 

materials. Unfortunately, the amount of available data is limited in most countries. This study was conducted to present the CO2 

emission data of concrete, which is the most important construction material in Korea, by conducting a statistical analysis of the 

concrete mix proportion. Finally, regression models that can be used to estimate the CO2 emission of concrete in all strengths were 

developed, and the validity of these models was evaluated using 24 and 35MPa concrete data. The validation test showed that the 

error ratio of the estimated value did not exceed a maximum of 5.33%. This signifies that the models can be used in acquiring the 

CO2 emission data of concrete in all strengths. The proposed equations can be used in assessing the environmental impact of 

various construction structural designs by presenting the CO2 emission data of all concrete types. 
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I. INTRODUCTION 

Greenhouse gas (GHG) emission has become a global 

issue alongside global warming. Various efforts have 

been exerted in the construction industry to reduce GHG 

emission, including numerous studies on life cycle 

assessment (LCA), which is aimed at controlling and 

reducing the amount of GHGs emitted from buildings. 

LCA is a representative methodology used in assessing 

the environmental impact of a product during its life 

cycle [1, 2]. It generally targets products from factories or 

services, but recently it is also being actively used in 

assessing the environmental impact of buildings. Based 

on the LCA results of various construction materials, 

reduced emission of GHG, particularly CO2, throughout 

the lifespan of buildings from construction to their 

disposal has been the objective of many studies. 

In the construction industry, LCA is used as a tool to 

assess the environmental impact of a building, such as the 

amount of CO2 it emits [3, 4]. Among various design 

alternatives, LCA is used in supporting the process of 

selecting the most environment-friendly design [5, 6]. 

Until now, however, it has been impossible to completely 

assess the environmental impact of buildings that used 

various types of construction materials. Thus, the 

assessment of a building’s CO2 emission has been limited 

to the same defined assessment scope or level. In other 

words, previous studies have examined the amount of 

CO2 emitted by a building based on the assessment 

results under incomplete but identical conditions.  

 

 

 

 

 

 

 

 

Therefore, to obtain more accurate and detailed results, 

it is essential to have a life cycle inventory (LCI) 

consisting of CO2 emission data that have been defined 

and examined in a detailed way. One such method is 

acquiring CO2 emission data from each material used in 

constructing a building. 

Concrete, the most essential building construction 

material, is unfortunately also the one that emits the 

largest amount of CO2 during production. In the 

construction industry, concrete has various strengths, and 

the structural-design alternatives include concrete with 

various strengths. This indicates that assessing the CO2 

emission of all structural-design alternatives requires CO2 

emission data on all strengths and types of concrete. To 

date, however, CO2 emission data on concrete have been 

limited. To illustrate, the available LCI data in South 

Korea include only those of 21 and 24MPA concrete, as 

presented by the Ministry of Knowledge Economy 

(MKE). As a preliminary effort to acquire the CO2 

emission data of all construction materials, this study 

aimed to propose detailed CO2 emission data for concrete, 

which also happens to contribute the most to the amount 

of CO2 emitted by buildings. 

To estimate construction cost and duration, studies 

have examined various methods ranging from statistical 

methods such as regression analysis to artificial neural 

networks or genetic algorithms [7-14]. 
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Since the regression model can predict or explain the 

changes in the dependent variables based on those 

variables’ relation with the independent variables [15], it 

can be used in proposing the CO2 emission data of 

concrete according to strength. Further, there has yet to be 

a study that used statistical analysis based on the 

collected data to propose CO2 emission data. This study 

aimed to use statistical analysis to propose the CO2 

emission data of all strengths and types of concrete to 

enable the assessment of various structural-design 

alternatives. Towards this end, this study (1) defined the 

factors contributing to a change in the concrete strength 

and to the difference in CO2 emission by strength; (2) 

performed statistical analysis using the concrete mix 

design data collected from various concrete producers; 

and (3) verified the validity of the model to predict CO2 

emission of concrete using data that were not used in the 

statistical analysis. 

 

II. FACTORS CONTRIBUTING TO CO2 EMISSION OF 

CONCRETE 

To acquire CO2 emission data of concrete according to 

strength, the elements that affect concrete strength must 

first be examined. What elements change as the concrete 

strength changes and how much change in CO2 emission 

is caused by the changes in such elements should first be 

evaluated. In this study, the related literature was 

reviewed to identify the factors contributing to a change 

in concrete strength, and among the identified factors, the 

factors affecting the CO2 emission of concrete were 

subsequently determined. 

 

A. Factors affecting change in concrete strength and CO2 

emission 

The processes from manufacturing concrete to the 

construction of a building using concrete can be divided 

into three stages: production of raw materials for the 

concrete, mixing of the produced raw materials, and field 

construction using the mixed concrete. In each of these 

stages, there are factors that may lead to a change in 

concrete strength. Such factors present in each stage may 

also include factors that can change the amount of CO2 

emitted. In this study, it was assumed that the CO2 

emission would change based on the factors that may 

cause concrete strength to change. 

The factors that may cause concrete strength to change 

at each stage were identified. First, concrete strength 

differs according to the materials mixed. Concrete 

strength is affected by the quality of the cement and 

aggregate, and by the mix of fly ash and ground-

granulated blast-furnace slag (GGBS), among others [16]. 

While the quality of the cement and aggregate affects 

concrete strength, it is not included in the concrete mix 

design report presented at the concrete production stage. 

Consequently, it is impossible to acquire data that include 

the quality of the cement and aggregate. The quality of 

the cement and aggregate was disregarded in the analysis 

of the CO2 emission by concrete strength in the present 

study. 

Concrete strength is also affected by the mix of 

cementitious materials including fly ash as well as GGBS 

[16]. The amount of cement used in identical-strength 

concrete types may change according to the amount of 

GGBS and fly ash, which in turn will result in a change in 

the amount of CO2 emitted by concrete. As the concrete 

mix design report identifies the amounts of cement, 

GGBS, fly ash, and other raw materials in concrete, the 

differences in such amounts can be verified from the 

concrete mix table. Consequently, GGBS and fly ash 

were defined as the analysis targets in this study. 

The water-cement and fine-aggregate ratios can affect 

concrete strength in the concrete-batching process [16]. 

The difference in these ratios signifies the difference in 

the amounts of raw materials mixed, which results in a 

difference in CO2 emission. Like GGBS and fly ash, the 

concrete mix design report shows these two ratios, and 

the differences in such ratios can be determined through 

the concrete mix table.. 

Finally, factors affecting concrete strength also exist in 

the field construction process using concrete. Curing 

condition and temperature have been known to lead to a 

change in concrete strength [16], but these factors are out 

of the scope of estimation or adjustment in the design 

stage. Thus, it is difficult to consider curing condition and 

temperature in the design stage so they were excluded 

from the analysis targets in this study. 

 

B. CO2 emission of each raw material 

To acquire the CO2 emission data of concrete 

according to strength, it is necessary to acquire the CO2 

emission data of each raw material as well as the mix 

proportion of the raw materials based on concrete 

strength. As mentioned in section 2.1, this study assumed 

that the quality of raw materials is the same in all 

concrete types, so the representative CO2 emission factor 

of each raw material should be presented. This 

representative factor can be derived from the literature 

review. Previous studies have proposed the CO2 emission 

factors of raw materials comprising concrete [17, 18], 

which have already been verified and can thus be used in 

this study. Instead of performing an additional process to 

acquire the CO2 emission factor of each raw material, the 

CO2 emission factor proposed by previous studies was 

used. Table 1 shows the CO2 emission factors of raw 

materials proposed by previous studies. 

 
TABLE I 

CO2 EMISSION FACTOR OF RAW MATERIALS 

 CO2 Emission Factor Source 

Coarse Aggregates 0.0408 [18] 

Fine Aggregates 0.0139 [18] 

Cement 0.82 [18] 

Fly ash 0.027 [18] 

GGBFS 0.143 [18] 

Water 0.00011174 [19] 

Admixture 0.25 [17] 
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III. STATISTICAL ANALYSIS OF THE CO2 EMISSION OF 

CONCRETE ACCORDING TO STRENGTH 

The difference in the amounts of raw materials used in 

producing concrete affects concrete strength and CO2 

emission. This signifies that the change in concrete 

strength results from the amount of raw materials used in 

producing the concrete, which in turn causes concrete 

CO2 emission to change. This study hypothesized that 

based on a certain principle, a change in concrete strength 

will result in a change in the CO2 emission. This study 

aimed to discover such principle via statistical analysis, 

and subsequently determine the CO2 emission data of 

concrete by strength. 

 

A. Data collection and normalization 

Determining the CO2 emission data according to 

concrete strength requires information on the mix 

proportion of the raw materials comprising concrete. The 

concrete mix design report provided by South Korean 

concrete producers includes information on seven raw 

materials (coarse aggregates, fine aggregates, cement, fly 

ash, GGBS, water, and admixture). In this study, the 

concrete mix design reports on concrete with the strength 

most widely used in the South Korean construction 

industry were collected. Since the concrete mix design 

changes according to the concrete slump value and 

maximum aggregate size, these two factors were also 

considered. The collected concrete mix design reports on 

concrete with the strength most widely used in South 

Korea showed that the maximum size of the aggregates 

included in all concrete types is identical: 25 mm. The 

study analyzed concrete with a 25 mm maximum 

aggregate size and concrete slump values of 80, 120, or 

150 mm. To obtain reasonable results, concrete mix 

design reports were collected from various concrete 

producers. 

 
TABLE II 

NUMBER OF CONCRETE DATA 

Concrete 

Strength 

Concrete Slump Value (mm) 

80 120 150 

18MPa 8 14 17 

21MPa 8 13 13 

24MPa 8 13 21 

27MPa 8 8 14 

30MPa 3 3 14 

 

As shown in Table 2, concrete mix design reports 

where concrete had strengths of 18, 21, 24, 27, and 30 

MPa were collected from 11 concrete producers. The 

amounts of raw materials according to concrete strength 

were determined. Among the three concrete types, 

concrete with a slump value of 150 mm was explained in 

detail in this study. Results of the analysis were obtained 

and proposed based on the data of three types of concrete 

used in South Korea. 

 

 FIGURE I 

PROCESS OF COLLECTING DATA FOR ANALYSIS 

 

Data collected were normalized prior to analysis. The 

concrete mix design reports collected in this study 

expressed the amounts of raw materials in kg to produce 

1m
3
 concrete. Although it is generally known that 1m

3
 

concrete weighs 2,300 kg, the weight of 1m
3
 concrete in 

fact differs based on the collected data. To obtain accurate 

analysis results, the amounts of raw materials used to 

produce 1m
3
 concrete were converted into the identical 

kg unit. Accordingly, the collected data were normalized 

based on the process shown in Fig. 1. 

First, the collected daitted byta showed that the total 

weight of 1m
3
 concrete differed according to the weights 

of the raw materials used to produce the
 

concrete. 

Therefore, the amount of each raw material used in 

producing 1kg concrete was calculated by dividing the 

amount of raw material in each data (1) by the total 

weight of 1m
3
 concrete (2). The result was converted into 

the value for 1tonne concrete for convenience in the 

subsequent process. Next, the normalized data (3), the 

weight data of the raw materials used in producing 1tonne 

concrete, should be converted into CO2 emission data to 

determine the amount of CO2 emitted by concrete. In 

other words, by reflecting the CO2 emission factor by raw 

material (4) on the normalized amount of each raw 

material, the data for analyzing the CO2 emission of 

concrete (5) can be acquired. The result shown in Table 1 

was used as the CO2 emission factor of the raw materials. 

The CO2 emission from the concrete-batching process (8) 

was additionally reflected to calculate the final amount of 

CO2 emitted during the production of concrete (9). 
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TABLE III 

NORMALIZED DATA OF 21MPA CONCRETE (UNIT: KGCO2/TONNE) 

No. 

Coarse 

aggregat

es 

Fine 

aggregat

es 

Cement 
Fly  
ash 

GGBFS Water 
Admixt

ure 
Total 

1 16.43 5.46 75.39 0.529 2.804 0.008 0.230 100.85 

2 16.44 5.32 74.90 0.715 2.966 0.008 0.243 100.59 

3 16.11 5.54 99.05 0.362 0.000 0.008 0.286 121.36 

4 16.53 5.37 77.45 0.552 2.925 0.008 0.170 103.00 

5 16.01 5.46 100.49 0.446 0.000 0.008 0.330 122.74 

6 16.82 5.20 79.48 0.554 2.934 0.008 0.172 105.16 

7 16.61 5.37 92.25 0.539 0.000 0.008 0.232 115.01 

8 16.62 5.29 104.57 0.303 0.000 0.008 0.243 127.04 

9 16.11 5.47 104.37 0.293 0.000 0.008 0.329 126.58 

10 15.30 5.78 102.53 0.291 0.000 0.008 0.476 124.38 

11 15.79 5.52 103.54 0.374 0.000 0.008 0.491 125.72 

12 16.61 5.29 102.53 0.374 0.000 0.008 0.243 125.06 

13 16.21 5.37 104.78 0.386 0.000 0.008 0.284 127.04 

 

The amount of CO2 emitted from the concrete-batching 

process can be calculated based on the amount of 

electricity, water, or fuel consumed in operating the 

machines and facilities in the batch plant. In this study, 

concrete production and the amounts of electricity, water, 

and fuel that were used were collected from a 

representative South Korean concrete producer. Based on 

such data, the amount of CO2 emitted in the concrete-

batching process was calculated. For the CO2 emission 

factor of electricity and fuel, the energy conversion factor 

and fuel equivalent to the regulated use of energy in 

South Korea [19] and the carbon emission factor of [20] 

were referred to in this study. For the CO2 emission factor 

of water, the LC data reported by ME was used. The 

results showed that the batching process produces 0.8898 

kgCO2/tonne. While this figure is negligible compared to 

the amounts of CO2 emitted from raw materials, a more 

accurate CO2 emission factor of concrete can be proposed 

by reflecting this result on the analysis. Shown in Table 3 

are the normalized data of 21MPa concrete resulting from 

such process. 

 

B. Statistical analysis of the CO2 emission data of 

concrete 

In this study, the hypothesis that based on a certain 

principle, change in concrete strength results in a change 

in the amount of CO2 emitted by concrete was verified 

via statistical analysis. For the statistical analysis, SPSS 

18.0 was used. 

Prior to the statistical analysis, the characteristics of the 

factors affecting concrete strength were examined based 

on the changes in concrete strength. First, the changes in 

the amounts of GGBS and fly ash, which were defined as 

factors affecting CO2 emission, were verified. GGBS and 

fly ash are used as substitute materials for cement in 

concrete. The amount of cement changes based on the 

amounts of GGBS and fly ash used in concrete. 

Therefore, rather than comparing the amount of GGBS 

and fly ash, more accurate results can be obtained by 

verifying the ratio of GGBS and fly ash to the amount of 

cementitious materials. Accordingly, in this study, the 

amounts of GGBS and fly ash were not the variables 

examined, but the ratio of cement to the total 

cementitious materials (C/T ratio). An examination of the 

C/T ratio of the normalized dataset showed that the set 

was divisible into two groups, despite the identical 

concrete strengths. As shown in Fig. 2, the dataset was 

divided into the C/T ratio data that remained at around 

90% (group 1) and at around 70% C/T ratio data (group 

2). This signifies that two concrete types are most 

commonly used in South Korea. Statistical analysis was 

conducted with the dataset divided into two groups based 

on the C/T ratio. 

Next, the water-cement and fine-aggregate ratios were 

examined. As shown in Fig. 3(a), the water-cement ratio 

decreased as concrete strength increased. Unlike GGBS 

and fly ash, however, the data in the cases with identical 

concrete strengths were not divided into groups. This 

indicates that in South Korea, concrete with a certain 

water-cement ratio is used based on concrete strength. 

There was no need to conduct a statistical analysis by 

dividing the dataset based on the water-cement ratio. As 

shown in Fig. 3(b), the fine-aggregate ratio did not show 

any characteristic based on the change in concrete 

strength. There was no steady change based on the 

change in concrete strength or on the dataset in the cases 

with identical concrete strengths that were divided into 

groups. 

 

 FIGURE II 
CATEGORIZATION OF CONCRETE BY C/T RATIO 

 

 FIGURE III 
CATEGORIZATION OF 150-MM-SLUMP CONCRETE BASED ON THE (A) 

WATER-CEMENT RATIO AND (B) FINE-AGGREGATE RATIO 

 

In this study, the dataset was divided into two concrete 

groups based on the C/T ratio, and each concrete group 

was subjected to statistical analysis. Consequently, the 
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dataset was also divided based on the concrete slump 

values, and a total of six groups were subjected to 

separate analyses. The process that was carried out after 

the statistical analysis shall be explained by group 1, with 

a 150-mm slump, which represents the most widely used 

concrete strength with the largest data. 

 

1) Mann-Whitney test 

This study hypothesized that the amount of CO2 

emitted changes steadily based on the change in concrete 

strength. This hypothesis is based on the fact that 

concrete data are clearly divided based on concrete 

strength. Therefore, before analyzing the change in CO2 

emission by concrete strength, a homogeneity test of the 

data divided by concrete strength was performed to 

determine whether the CO2 emission of concrete can be 

divided into groups based on concrete strength or not.  

In statistics, a homogeneity test of samples generally 

employs analysis of variance (ANOVA). For a smaller 

number of variables, however, a non-parametric test is 

more appropriate [21, 22]. Having collected 20 or less 

data in terms of concrete strength for statistical analysis, a 

non-parametric test was carried out instead in this study. 

It is appropriate to compare each dataset by concrete 

strength to perform a homogeneity test of the dataset, the 

Mann-Whitney test, which can be used to verify the 

amount of overlap between two independent samples 

[21]. 

Table 4 shows the results of the homogeneity test. If 

the p-value is smaller than the 0.05 significance level, the 

null hypothesis can be rejected [21, 22]. Thus, in all the 

homogeneity tests, the null hypothesis was rejected. All 

the concrete data were found to be distinguished by 

concrete strength. 

 
TABLE IV 

RESULTS (P- VALUE) OF MANN-WHITNEY TEST 

 18MPa 21MPa 24MPa 27MPa 30MPa 

18MPa  0.003 0.000 0.000 0.003 

21MPa   0.002 0.000 0.003 

24MPa    0.000 0.002 

27MPa     0.005 

30MPa      

 

2) Descriptive statistics 

Table 5 shows the summary statistics of the data 

variables: the mean value, standard error of the mean 

(SEM), standard deviation (SD), confidence interval (CI), 

etc. First, to verify the difference in CO2 emission 

according to concrete strength, the mean value was 

examined. As shown in Table 5, the mean CO2 emission 

tended to increase from 18 to 30 MPa. A considerably 

small value resulted in all the concrete-strength cases in 

terms of SD. This indicates that the data can be grouped 

by concrete strength, which complements the results 

presented in section 3.2.1. Thus, it is clear that the data 

regarding the CO2 emission of concrete are divisible by 

concrete strength. Thus, while this result may not point to 

accurate data regarding the amount of CO2 representing 

all the concrete types, the mean CO2 emission according 

to concrete strength is sufficiently significant. 

Furthermore, to verify the uncertainty of the mean CO2 

emission of concrete, the CI, which was calculated based 

on the assumption that samples generally follow a normal 

distribution, was examined. If the samples are big, they 

are assumed to still follow a normal distribution although 

they may be slightly off the norm [22]. If the number of 

variables is small or if there is no information on the 

distribution, it should be determined if the samples follow 

a normal distribution [22]. A normality test was also 

conducted on the sample variables. 

 
TABLE V 

SUMMARY STATISTICS FOR DATA VARIABLES (GROUP 1 WITH SLUMP 

150MM) (UNIT: KG-CO2/TONNE) 
Title 18MPa 21MPa 24MPa 27MPa 30MPa 

Sample Size (n)  9 9 11 10 5 

Mean of  

CO2 emission 
115.28 124.77 131.47 140.94 150.24 

Standard Deviation 5.811 3.849 3.322 4.076 5.317 

Low Level 95% CI 110.82 121.81 129.24 138.02 143.64 

Upper Level 95% CI 119.75 127.73 133.71 143.86 156.84 

Shapiro-Wilk W test 0.904 0.811 0.918 0.962 0.883 

P-value 0.276 0.027 0.306 0.804 0.323 

Normal ? Yes No Yes Yes Yes 

 

Many researchers argue that the Shapiro-Wilk W test is 

the most reliable in verifying the normality of small to 

medium-sized samples [21]. According to the SAS 

manual, if the number of samples is 50 or less, it is more 

appropriate to conduct the Shapiro-Wilk W test than the 

Kolmogrov Smirnov test [23]. In this study, the Shapiro-

Wilk W test was conducted, and the results are shown in 

Table 4. If the p-value is equal to or smaller than the 

significance level of 0.05, the null hypothesis will be 

rejected. Thus, in all the concrete strengths except for 

21MPa concrete, the null hypothesis was not rejected. It 

was confirmed that the dataset in all the concrete 

strengths followed a normal distribution. Even though the 

21MPa concrete did not follow a normal distribution, CI 

verification with a 0.05 significance level showed that the 

CO2 emission values according to concrete strength rarely 

overlapped with one another. This means that the CO2 

emission factor of concrete is clearly distinguished by 

concrete strength. It can be determined that the mean 

value presented by the analysis can be used as the CO2 

emission level that represents each concrete strength. A 

similar result was shown in the descriptive statistics on 

the data included in group 2. Table 6 shows the results of 

analysis for group 2. 

 
TABLE VI 

SUMMARY STATISTICS FOR DATA VARIABLES (GROUP 2 WITH SLUMP 

150MM) (UNIT: KG-CO2/TONNE) 
Title 18MPa 21MPa 24MPa 27MPa 30MPa 

Sample Size (n)  8 4 9 4 9 

Mean of  

CO2 emission 
96.13 103.29 109.14 116.89 124.75 

Standard Deviation 1.855 2.136 2.387 2.534 3.171 

Low Level 95% CI 94.58 99.89 107.30 112.86 122.32 

Upper Level 95% CI 97.69 106.69 110.97 120.92 127.19 

Shapiro-Wilk W test 0.971 0.896 0.903 0.8470 0.985 

P-value 0.903 0.412 0.267 0.2180 0.986 

Normal ? Yes Yes Yes Yes Yes 
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3) Regression analysis 

Using descriptive analysis, the mean CO2 emission was 

extracted as the CO2 emission data of concrete with five 

strengths. A construction project, however, uses concrete 

with various strengths. Therefore, a more accurate 

assessment of the CO2 emission for the entire structural 

design requires the presentation of the CO2 emission data 

based on all strengths and types of concrete. 

Regression analysis can deduce the relation between 

the independent and dependent variables and can be used 

in predicting or explaining the change in the dependent 

variables [15]. In this study, simple regression analysis 

was performed, based on Table 5 and 6, to predict the 

CO2 emission of concrete with the strengths that were not 

included in the collected data. The amount of CO2 

emitted by concrete was set as a dependent variable, and 

the concrete strength was pegged as an independent 

variable. 

Table 7 and Fig. 4 show the results of the simple 

regression analysis of the six concrete groups in this 

study. The explanatory power of the regression model can 

be verified by R-square (R
2
) — i.e., the closer R

2
 is to 1, 

the larger the independent variable’s explanatory power 

of the dependent variable becomes [24, 25]. As the R
2
 

values of all the groups were over 0.99, the results of the 

regression analysis were reliable. As shown in Fig. 4, the 

results were clearly separated according to the concrete 

group. 

 
TABLE VII 

RESULTS OF SIMPLE REGRESSION ANALYSIS 

Concrete 
Slump 

(mm) 

Model 
(Group) 

Unstandardized 

Coefficients 

Standardized 

Coefficients R2 

B Std. Error Beta 

150 

1 
(Constant) 63.672 2.161  

0.997 
Strength 2.87 0.089 0.999 

2 
(Constant) 53.369 1.725  

0.997 
Strength 2.361 0.071 0.999 

120 

1 
(Constant) 63.672 2.161  

0.997 
Strength 2.87 0.089 0.999 

2 
(Constant) 53.369 1.725  

0.997 
Strength 2.361 0.071 0.999 

80 

1 
(Constant) 63.672 2.161  

0.997 
Strength 2.87 0.089 0.999 

2 
(Constant) 53.369 1.725  

0.997 
Strength 2.361 0.071 0.999 

 

These results can be expressed by each of the 

following equations, where y is the CO2 emission factor 

of concrete and x is the concrete strength. Considering the 

concrete slump value and C/T ratio, the CO2 emission of 

concrete can be predicted — i.e., equations (1) to (6) can 

be used to determine the CO2 emission values of 80- to 

120- and 150-mm-slump concrete when each is included 

in group 1 or 2, respectively. 

 

)161.2(672.63  xy                                                (1) 

)361.2(369.53  xy                                                (2) 

)8329.2(41.62  xy                                                (3) 

)2398.2(986.52  xy                                            (4) 

)7703.2(396.59  xy                                            (5) 

)2803.2(031.48  xy                                              (6) 

 

 FIGURE IV 
RESULTS OF SIMPLE REGRESSION ANALYSIS 

 

IV. VALIDATION OF THE REGRESSION MODEL 

Using the equations from the simple regression 

analysis, the CO2 emission of concrete according to 

strength can be calculated. In this study, the validity of 

the six equations was verified by comparing the CO2 

emission values from the equations and the original CO2 

emission of concrete. 

For complete verification, the test should compare the 

predicted CO2 emission value to the amount of CO2 

emitted in the actual concrete production process. Since it 

is impossible to determine the accurate value in reality, 

the value obtained from calculating the CO2 emission of 

the raw materials comprising concrete and of the amount 

of CO2 emitted in the batching process was used as the 

original CO2 emission value. 

The validation process was divided into two parts. 

First, to verify the accuracy of the equations, the 

equations were verified based on the data obtained in the 

five different-strength cases. In other words, the equations 

were verified using the 24MPa concrete data acquired 

from a concrete producer, which were not included in the 

regression analysis. Results of the analysis of the C/T 

ratios of the collected data showed that data #1 and 7 

belonged to group 2, while the rest belonged to group 1. 

Thus, the data were divided into two groups, where 

equations (1) and (2) were used. Table 8 shows the 

validation results of the seven cases in this study. The 

comparison of the predicted CO2 emission value and the 

original CO2 emission value showed that the maximum 

error rate was 5.33%, indicating the regression model’s 

excellent performance. 

 
TABLE VIII 

CO2 EMISSION RESULTS AND ERROR RATES FOR THE 150-MM-SLUMP 

24MPA CONCRETE 

No. Group 
CO2 Emission 

(kg CO2/tonne) 

CO2 Emission by Equation 

(kg CO2/tonne) 

Error 

Rate 

1 2 109.2921 110.033 0.67 

2 1 130.2373 132.552 1.75 

3 1 133.6330 132.552 0.82 

4 1 131.3463 132.552 0.91 

5 1 125.4839 132.552 5.33 

6 1 133.5675 132.552 0.77 

7 2 106.9934 110.033 2.76 
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Second, to verify the prediction performance of the 

regression model, a validation test of concrete that was 

not included in the five different-strength cases was 

carried out. The same validation test was carried out 

using the data for 35MPa concrete. The results showed an 

error rate of 0.24%, which means that the regression 

model can be used in determining the CO2 emission of 

concrete that exceeds the scope of the collected data. 

The prediction performance of the regression model 

was verified using only one dataset:  35MPa concrete. 

The regression model was not verified on high-strength 

concrete, such as 50 or 80MPa concrete. Due to 

insufficient data collected, a validation test was not 

carried out on 80- and 120-mm-slump concrete. 

Additional data are needed and a validation test should be 

carried out in the future to improve the reliability of the 

prediction performance of the proposed equations. 

 

V. CONCLUSION 

This study aimed to propose the CO2 emission factor of 

concrete, which is a fundamental structural material, 

based on strength using statistical analysis. A statistical 

analysis of the concrete mix proportion data collected 

from representative South Korean concrete producers was 

conducted. Results yielded a regression model that could 

predict the CO2 emission of concrete according to 

strength based on the C/T ratio and slump value. 

Moreover, validation of the prediction performance of the 

proposed regression model showed a considerably low 

error rate. 

With the proposed regression model, the CO2 emission 

values of concrete types with various strengths used in 

South Korea can be calculated. The CO2 emission of 

concrete generated by the proposed regression model can 

be used in the environmental-impact assessment of 

various structural-design alternatives proposed in the 

design stage, to support the process of selecting the most 

environment-friendly design. 

A limitation of this study is that the proposed 

regression model was based only on simple linear-

regression analysis. While the proposed model showed 

considerably accurate results in the validation test with 

regard to certain datasets, its prediction performance was 

not verified with high-strength concrete like 50 or 80MPa 

concrete. For future research, more data on high-strength 

concrete should be collected and used. Rather than using 

only the simple linear-regression model, the log model 

(an index model) and the second-order model, among 

others, should also be used. Furthermore, the proposed 

model does not represent all the concrete types being 

used in South Korea because the data collected and used 

in this study were limited. Specifically, only the 

representative concrete types that are generally being 

used in construction projects in South Korea were used in 

this study. Special concrete types like cold- or hot-

weather concrete were not considered. The data collected 

were also limited to the concrete types being used in the 

metropolitan area. Despite its high prediction 

performance, the proposed regression model has 

limitations in presenting results that consider the seasonal 

factors or various production conditions in South Korea. 

For future research, data on the concrete types being used 

nationwide should be collected and used, and more 

accurate and inclusive results should be presented. 
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